yolov5特征图可视化的使用步骤

目录
  • 前言
  • 一、效果图
  • 二、使用步骤
    • 1.使用方法
    • 2.注意事项
  • 总结
  • 参考

前言

最近写论文需要观察中间特征层的特征图,使用的是yolov5的代码仓库,但是苦于找不到很好的轮子,于是参考了很多,只找了这个,但是我觉得作者写的太复杂了(我之前就是这个作者的小粉丝),在参考了github的yolov5作者给出的issue建议后,自己写了个轮子,没有复杂的步骤,借助torchvision中的transforms将tensor转化为PIL,再通过matplotlib保存特图。希望能给大家带来一些帮助。

一、效果图

先上一下效果图,因为深层的特征有高达1024个,这里我只打印了8*8的特征图,用plt.subplot将64张特征图展示在一张图片上。原图为我在百度上随便搜的猫咪:

这是yolov5x.pt进行detect过程中,经过可视化后的第一个C3模块的前64张特征图:

这里也可以设置为灰度图,后续代码中会给出。

可以看到不同特征图所提取到的特征几乎都不相同,有的侧重边缘,有的则是侧重整体,当然这只是第一个C3的特征图,相对于更深层的特征来说,浅层的特征大多是完整的,而更深层的特征则会更小,而且是提取到的细小特征,当然,这些特征图也都是相互联系的,网络结构是个整体。

借助yolov5作者在issue里说到的:

BTW, a single feature map may be in my opinion a shallow set of information, as you are looking at a 2d spatial slice but are not aptly observing relationships across the feature space (as the convolutions do).

I guess an analogy is that you would be viewing the R, G, B layers of a color image by themselves, when it helps to view them together to get the complete picture.

单个特征图可能是一组浅层信息,因为你正在查看 2d 空间切片,但并未恰当地观察特征空间中的关系(如卷积所做的那样)。

这里是我自己的理解,通过特征图的可视化,也进一步的理解了卷积到底干了些什么事情,如果有想进一步交流的小伙伴,私信一起讨论,一起学习呀。

二、使用步骤

1.使用方法

使用方法很简单,只需要在utils中的general.py或者plots.py添加如下函数:

import matplotlib.pyplot as plt
from torchvision import transforms

def feature_visualization(features, model_type, model_id, feature_num=64):
    """
    features: The feature map which you need to visualization
    model_type: The type of feature map
    model_id: The id of feature map
    feature_num: The amount of visualization you need
    save_dir = "features/"
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    # print(features.shape)
    # block by channel dimension
    blocks = torch.chunk(features, features.shape[1], dim=1)
    # # size of feature
    # size = features.shape[2], features.shape[3]
    plt.figure()
    for i in range(feature_num):
        torch.squeeze(blocks[i])
        feature = transforms.ToPILImage()(blocks[i].squeeze())
        # print(feature)
        ax = plt.subplot(int(math.sqrt(feature_num)), int(math.sqrt(feature_num)), i+1)
        ax.set_xticks([])
        ax.set_yticks([])
        plt.imshow(feature)
        # gray feature
        # plt.imshow(feature, cmap='gray')
    # plt.show()
    plt.savefig(save_dir + '{}_{}_feature_map_{}.png'
                .format(model_type.split('.')[2], model_id, feature_num), dpi=300)

接着在models中的yolo.py中的这个地方:

def forward_once(self, x, profile=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers

            if profile:
                o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPS
                t = time_synchronized()
                for _ in range(10):
                    _ = m(x)
                dt.append((time_synchronized() - t) * 100)
                print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            # add in here
        if profile:
            print('%.1fms total' % sum(dt))
        return x

添加如下代码:

            feature_vis = True
            if m.type == 'models.common.C3' and feature_vis:
                print(m.type, m.i)
                feature_visualization(x, m.type, m.i)

添加在yolo.py后,无论是在detect.py还是在train.py中都会进行可视化特征图。

然而训练的过程中并不一定需要一直可视化特征图,feature_vis参数是用来控制是否保存可视化特征图的,保存的特征图会存在features文件夹中。如果想看其它层的特征只需要修改m.type或是用m.i来进行判断是否可视化特征图。m.type对应的是yaml文件中的module,即yolov5的基础模块,例如c3,conv,spp等等,而m.i则更好理解,即是模块的id,通常就是顺序,如果你尝试修改过配置文件,那么你肯定知道是什么。

如果不明白,多使用print函数,用list.len()和tensor.size去查看列表长度和张量维度,打印出来你就知道了。

这里有一个点我很迷惑,不知道有没有大佬可以告诉我原因,就是我并没有找到yolo.py和detect.py之间的关联,detect.py中使用的是:

model = attempt_load(weights, map_location=device)

而并没有使用yolo.py中的Model函数,但是运行detect.py同样可以可视化特征图,不是很懂pytorch代码中的这个机制,希望有大佬可以指教一下,代码还是有些菜。

2.注意事项

注意1:在yolo.py的开头import feature_visualization:

from utils.general import feature_visualization

注意2:yolov5无论是在detect还是在train的过程中,都会先对模型进行Summary,即验证你的模型的层数,参数以及是否有梯度,这个过程也会保存特征图,但是不要担心,因为你保存的特征图名字是相同的,会被覆盖,如果你打印的出来log就会看到整个模型跑了两次:

Model Summary: 476 layers, 87730285 parameters, 0 gradients

注意3:建议训练完成的网络使用detect.py来进行验证特征图。

当然在yolo.py里面也可以将'__main__'中的 :

model = Model(opt.cfg).to(device)

替换为:

model = attempt_load(opt.weights, map_location=device)

同样可以跑通(把detect.py中的opt.weights复制过来)。在yolo.py中打开Profile,将随机生成的图片换成自己的图片,就可以正常的进行验证。

总结

周末摸鱼时间写了这个(也不算摸鱼,下周该写论文初稿了orz),希望给大家带来帮助,如果有疑问或者错误,在评论区或者私信联系我,之后我会把这个提交一个pr到yolov5的官方仓库里(之前提交了一个visdrone.yaml的配置文件,幸被采用了,参考的就是这个作者的代码,感谢!),就到这里,最后上一个spp结构的特征图输出,希望和大家一起讨论。

以上。

参考

pytorch特征图可视化

pytorch 提取卷积神经网络的特征图可视化

深度学习笔记~卷积网络中特征图的可视化

自用代码 | YOLOv5 特征图可视化代码

将tensor张量转换成图片格式并保存

Pytorch中Tensor与各种图像格式的相互转化

到此这篇关于yolov5特征图可视化的文章就介绍到这了,更多相关yolov5可视化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 基于Pytorch版yolov5的滑块验证码破解思路详解

    前言 本文将使用pytorch框架的目标识别技术实现滑块验证码的破解.我们这里选择了yolov5算法 例:输入图像 输出图像 可以看到经过检测之后,我们能很准确的定位到缺口的位置,并且能得到缺口的坐标,这样一来我们就能很轻松的实现滑动验证码的破解. 一.前期工作 yolov系列是常用的目标检测算法,yolov5不仅配置简单,而且在速度上也有不小的提升,我们很容易就能训练我们自己的数据集. YOLOV5 Pytorch版本GIthub网址感谢这位作者的代码. 下载之后,是这样的格式 ---data

  • yolov5 win10 CPU与GPU环境搭建过程

    前言 最近实习任务为黑烟检测,想起了可以尝试用yolov5来跑下,之前一直都是用的RCNN系列,这次就试试yolo系列. 一.安装pytorch 1.创建新的环境 打开Anaconda Prompt命令行输入 创建一个新环境,并激活进入环境. # 创建了名叫yolov5的,python版本为3.8的新环境 conda create -n yolov5 python=3.8 # 激活名叫yolov5的环境 conda activate yolov5 2.下载YOLOv5 github项目 下载地址

  • yolov5特征图可视化的使用步骤

    目录 前言 一.效果图 二.使用步骤 1.使用方法 2.注意事项 总结 参考 前言 最近写论文需要观察中间特征层的特征图,使用的是yolov5的代码仓库,但是苦于找不到很好的轮子,于是参考了很多,只找了这个,但是我觉得作者写的太复杂了(我之前就是这个作者的小粉丝),在参考了github的yolov5作者给出的issue建议后,自己写了个轮子,没有复杂的步骤,借助torchvision中的transforms将tensor转化为PIL,再通过matplotlib保存特图.希望能给大家带来一些帮助.

  • keras 特征图可视化实例(中间层)

    鉴于最近一段时间一直在折腾的CNN网络效果不太理想,主要目标是为了检测出图像中的一些关键点,可以参考人脸的关键点检测算法. 但是由于从数据集的制作是自己完成的,所以数据集质量可能有待商榷,训练效果不好的原因可能也是因为数据集没有制作好(标点实在是太累了). 于是想看看自己做的数据集在进入到网络后那些中间的隐藏层到底发生了哪些变化. 今天主要是用已经训练好的mnist模型来提前测试一下,这里的mnist模型的准确度已经达到了98%左右. 使用的比较简单的一个模型: def simple_cnn()

  • 使用pytorch提取卷积神经网络的特征图可视化

    目录 前言 1. 效果图 2. 完整代码 3. 代码说明 4. 可视化梯度,feature 总结 前言 文章中的代码是参考基于Pytorch的特征图提取编写的代码本身很简单这里只做简单的描述. 1. 效果图 先看效果图(第一张是原图,后面的都是相应的特征图,这里使用的网络是resnet50,需要注意的是下面图片显示的特征图是经过放大后的图,原图是比较小的图,因为太小不利于我们观察): 2. 完整代码 import os import torch import torchvision as tv

  • Python基于Pytorch的特征图提取实例

    目录 简述 单个图片的提取 神经网络的构建 特征图的提取 可视化展示 完整代码 总结 简述 为了方便理解卷积神经网络的运行过程,需要对卷积神经网络的运行结果进行可视化的展示. 大致可分为如下步骤: 单个图片的提取 神经网络的构建 特征图的提取 可视化展示 单个图片的提取 根据目标要求,需要对单个图片进行卷积运算,但是Pytorch中读取数据主要用到torch.utils.data.DataLoader类,因此我们需要编写单个图片的读取程序 def get_picture(picture_dir,

  • python实现拉普拉斯特征图降维示例

    这种方法假设样本点在光滑的流形上,这一方法的计算数据的低维表达,局部近邻信息被最优的保存.以这种方式,可以得到一个能反映流形的几何结构的解. 步骤一:构建一个图G=(V,E),其中V={vi,i=1,2,3-n}是顶点的集合,E={eij}是连接顶点的vi和vj边,图的每一个节点vi与样本集X中的一个点xi相关.如果xi,xj相距较近,我们就连接vi,vj.也就是说在各自节点插入一个边eij,如果Xj在xi的k领域中,k是定义参数. 步骤二:每个边都与一个权值Wij相对应,没有连接点之间的权值为

  • 如何从PyTorch中获取过程特征图实例详解

    目录 一.获取Tensor ①类型转换 ②张量拆解 ③图像展示 总结 一.获取Tensor 神经网络在运算过程中实际上是以Tensor为格式进行计算的,我们只需稍稍改动一下forward函数即可从运算过程中抓到Tensor 代码如下: base_feature = self.extractor.forward(x) #正常的前向传递 feature=base_feature.detach() #抓取tensor feature_imshow(feature) #展示函数(关键代码) 通过将过程张

  • Flutter轮播图效果的实现步骤

    前端开发当中最有意思的就是实现动画特效,Flutter提供的各种动画组件可以方便实现各种动画效果.Flutter中的动画组件主要分为两类: 隐式动画控件:只需设置组件开始值,结束值,执行时间,比如AnimatedOpacity,AnimatedSize等组件. 显式动画控件:需要设置AnimationController,手动控制动画的执行.显式动画可以完成隐式动画的效果,甚至更加地可控和灵活,不过需要管理该动画的AnimationController生命周期,AnimationControll

  • Python绘制折线图可视化神器pyecharts案例

    目录 前言 折线图模板系列 自定义标签数据折线图 一天用电量折线图(特定场景) 断点折线图(根据场景进行配置) 双折线图显示最低最高数据标签(不显示其他数据标签) 双折线图显示平均刻度数据标签(数据可显示) 断点折线图(显示数据项) 面积折线图(不紧贴) 3D旋转弹簧图 前言 相信有很多的小伙伴看了如此多个案例之后肯定有所发现,每一个案例都对应着每一个配置,如果是官方配置文档,说实话看起来真的很难,这样通过案例实现来解决各种参数的配置,我觉得有一定的参考价值和学习意义,正所谓“磨刀不误砍工”,如

  • 利用Pytorch实现获取特征图的方法详解

    目录 简单加载官方预训练模型 图片预处理 提取单个特征图 提取多个特征图 简单加载官方预训练模型 torchvision.models预定义了很多公开的模型结构 如果pretrained参数设置为False,那么仅仅设定模型结构:如果设置为True,那么会启动一个下载流程,下载预训练参数 如果只想调用模型,不想训练,那么设置model.eval()和model.requires_grad_(False) 想查看模型参数可以使用modules和named_modules,其中named_modul

  • python-地图可视化组件folium的操作

    folium是python的一个用来绘制地图,并在地图上打点,画圈,做颜色标记的工具类.简单易学,和pandas可以很好的融合,是居家必备良品. 一 基本功能演示 import folium import webbrowser m=folium.Map(location=[40.009867,116.485994],zoom_start=10) # 绘制地图,确定聚焦点 folium.Marker([40.2,116.7],popup='<b>浮标上面的那个文字</b>').add

随机推荐