详解Python+Matplotlib绘制面积图&热力图

目录
  • 1.绘制面积图
  • 2.绘制热力图

1.绘制面积图

面积图常用于描述某指标随时间的变化程度。其面积也通常可以有一定的含义。

绘制面积图使用的是plt.stackplot()方法。

以小学时期学的 常见的追击相遇问题中的速度时间图像为例,下边绘制出一幅简单的v-t图像。

全局字体设为默认的黑体,时间为从第0秒到第10秒,描述的是甲乙两个物体的速度。显然,面积则表示位移。

标题部分字体使用楷体(将系统中的TTF字体文件"STKAITI.TTF"复制到了当前目录下)。

import matplotlib.pyplot as plt
from matplotlib import font_manager

fig = plt.figure(1, facecolor='#ffffcc', figsize=(6, 6))
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['axes.facecolor'] = '#cc00ff'
x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
v1 = [1, 1, 1, 2, 3, 4, 5, 5, 5, 5, 5]
v2 = [0.5, 0.5, 0.5, 1, 1.5, 2, 2.5, 3, 3, 2, 1]
plt.stackplot(x, v1, color=['#ff0000'])
plt.stackplot(x, v2, color=['#33ff66'])
plt.xlim(0, 10)
plt.title('v-t图像', fontsize=25, color='#0033cc', fontproperties=font_manager.FontProperties(fname="STKAITI.TTF"))
plt.xlabel('t/s')
plt.ylabel('v/(m/s)')
plt.legend(['甲', '乙'], bbox_to_anchor=(0.2, 0.95))
plt.show()

图像效果呈现如下:

2.绘制热力图

在数据分析中,热力图也是一种常用的方法,热力图通过色差、亮度来展示数据与数据之间的差异。

绘制热力图使用的是plt.imshow()方法,这个方法也即matplotlib中图像处理常用的方法。

下边做一个热力图的案例示例:

import matplotlib.pyplot as plt
from matplotlib import font_manager
import numpy as np
np.random.seed(30)
data = np.random.randint(70, 100, (30, 8))
plt.imshow(data)
plt.xticks(range(0, 8), ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'])
plt.yticks(range(0, 30), np.array(range(1, 31), dtype='U3'))
# 显示颜色条
plt.colorbar()
plt.title('30个产品的ABCDEFGH指标热力图', fontsize=25, color='#0033cc', fontproperties=font_manager.FontProperties(fname="STKAITI.TTF"))
plt.show()

图像效果呈现如下:

到此这篇关于详解Python+Matplotlib绘制面积图&热力图的文章就介绍到这了,更多相关Python Matplotlib面积图 热力图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python数据可视化Pyecharts制作Heatmap热力图

    目录 HeatMap:热力图 1.基本设置 2.热力图数据项 Demo 举例 1.基础热力图 本文介绍基于 Python3 的 Pyecharts 制作 Heatmap(热力图 时需要使用的设置参数和常用模板案例,可根据实际情况对案例中的内容进行调整即可. 使用 Pyecharts 进行数据可视化时可提供直观.交互丰富.可高度个性化定制的数据可视化图表.案例中的代码内容基于 Pyecharts 1.x 版本 . HeatMap:热力图 1.基本设置 class HeatMap( # 初始化配置项

  • Python如何绘制日历图和热力图

    本文以2019年全国各城市的空气质量观测数据为例,利用matplotlib.calmap.pyecharts绘制日历图和热力图.在绘图之前先利用pandas对空气质量数据进行处理. 2019年全国各城市空气质量观测数据来源于:https://beijingair.sinaapp.com. 数据处理 从网站下载的数据为逐小时数据,每天一个文件.如果要绘制全年的日历图或者热图,首先要将所有的数据进行合并处理. 下载好数据之后,将数据解压到当前目录的2019文件夹内,然后处理数据: import gl

  • python数据可视化Seaborn画热力图

    目录 1.引言 2. 栗子 3. 数据预处理 4. 画热力图 5. 添加数值 6. 调色板优化 1.引言 热力图的想法很简单,用颜色替换数字. 现在,这种可视化风格已经从最初的颜色编码表格走了很长一段路.热力图被广泛用于地理空间数据.这种图通常用于描述变量的密度或强度,模式可视化.方差甚至异常可视化等. 鉴于热力图有如此多的应用,本文将介绍如何使用Seaborn 来创建热力图. 2. 栗子 首先我们导入Pandas和Numpy库,这两个库可以帮助我们进行数据预处理. import pandas

  • Python绘制热力图示例

    本文实例讲述了Python绘制热力图操作.分享给大家供大家参考,具体如下: 示例一: # -*- coding: utf-8 -*- from pyheatmap.heatmap import HeatMap import numpy as np N = 10000 X = np.random.rand(N) * 255 # [0, 255] Y = np.random.rand(N) * 255 data = [] for i in range(N): tmp = [int(X[i]), in

  • python绘制热力图heatmap

    本文实例为大家分享了python绘制热力图的具体代码,供大家参考,具体内容如下 python的热力图是用皮尔逊相关系数来查看两者之间的关联性. #encoding:utf-8 import numpy as np import pandas as pd from matplotlib import pyplot as plt from matplotlib import cm from matplotlib import axes import pylab pylab.mpl.rcParams[

  • python热力图实现简单方法

    在我们想要对不同变量进行判断的时候,会分析其中的之间的联系.这种理念同样也被用在实例生活中,最常见到的是做一个地理的热力图.很多人对画热力图的方法不是很清楚,我们可以先装好相关的工具,了解一些使用参数,然后在实例中进行画热力图的实例体验,下面就来看看具体的方法吧. 1.导入相关的packages import seaborn as sns %matplotlib inline sns.set(font_scale=1.5) 2.参数 vmax:设置颜色带的最大值 vmin:设置颜色带的最小值 c

  • 详解Python+Matplotlib绘制面积图&热力图

    目录 1.绘制面积图 2.绘制热力图 1.绘制面积图 面积图常用于描述某指标随时间的变化程度.其面积也通常可以有一定的含义. 绘制面积图使用的是plt.stackplot()方法. 以小学时期学的 常见的追击相遇问题中的速度时间图像为例,下边绘制出一幅简单的v-t图像. 全局字体设为默认的黑体,时间为从第0秒到第10秒,描述的是甲乙两个物体的速度.显然,面积则表示位移. 标题部分字体使用楷体(将系统中的TTF字体文件"STKAITI.TTF"复制到了当前目录下). import mat

  • 详解Python+Pyecharts实现漏斗图的绘制

    目录 任务描述 相关知识 编程要求 测试说明 代码 任务描述 本关任务:利用 PyEcharts 绘制一个基本的漏斗图. 相关知识 为了完成本关任务,你需要掌握: 1. Python 的基本语法 2. PyEcharts 漏斗图的相关内容 导入图表类型 与日历图的操作类似,在文件的开始我们首先要将所需包导入,如右侧编辑器中代码所示. 导入漏斗图的语句为 from pyecharts.charts import Funnel 为了方便构造数据,我们还导入了 PyEcharts 提供的虚拟数据包,如

  • 如何利用Python matplotlib绘制雷达图

    本篇文章介绍使用matplotlib绘制雷达图. 雷达图也被称为网络图,蜘蛛图,星图,蜘蛛网图,是一个不规则的多边形.雷达图可以形象地展示相同事物的多维指标,雷达图几乎随处可见,应用场景非常多. 一.matplotlib绘制圆形雷达图 # coding=utf-8 import numpy as np import matplotlib.pyplot as plt results = [{"大学英语": 87, "高等数学": 79, "体育":

  • 详解Python+Turtle绘制奥运标志的实现

    目录 1. 画圆 2. 画奥运标识 3. 重构代码 4. 美化标识 5. 总结 最近了解了Python Turtle,非常简单有趣.为了培养小朋友兴趣,写个turtle画奥运标志程序. 1. 画圆 turtle属于内置包,无需安装.只要导入即可以画图,下面先写几行代码画圆. import turtle t = turtle.Pen() t.circle(50) t.getscreen()._root.mainloop() 导入turtle之后,创建Pen画笔t,避免后续代码.circle方法是画

  • 详解Matlab如何绘制小提琴图

    目录 1使用示例 基础使用,Y为矩阵 基础使用,Y为向量,X为标签 基础使用多个图像绘制,并添加图例 2完整代码 写了个matlab绘制小提琴图的函数: 1.图中小提琴状区域为核密度曲线 2.白色方块为25%,75%分位数 3.中间横线为中位数 4.白色点为离群值点 5.竖着的黑线是去掉离群值点后点的上下限 1使用示例 基础使用,Y为矩阵 X=1:5; Y=randn(100,5); Hdl1=violinChart(gca,X,Y,[0 0.447 0.741],0.6); X:横坐标 Y:数

  • Python Matplotlib绘制扇形图标签重叠问题解决过程

    目录 问题如下 解决 总结 问题如下 当我使用Matplotlib绘制图形时,经常会遇到一些比例太小导致 百分比标签 以及 文本标签 重叠问题.这样的话非常影响美观,效果在BOSS心中的大打折扣. 代码如下: from matplotlib import pyplot as plt frac = [0,0,18/50,16/50,9/50,6/50,2/50] label = ['[3,4]','(4,5]','(5,6]','(6,7]','(7,8]','(8,9]','(9,10]'] p

  • Python Matplotlib绘制动图平滑曲线

    目录 绘制动图 FuncAnimation ArtistAnimation 使用 scipy.ndimage.gaussian_filter1d() 高斯核类绘制平滑曲线 使用 scipy.interpolate.make_interp_spline() 样条插值类绘制平滑曲线 使用 scipy.interpolate.interp1d 插值类绘制平滑曲线 拟合曲线后绘制动图 绘制动图 FuncAnimation,它的使用要求简洁且定制化程度较高.如果想将很多图片合并为一个动图,那么Artist

  • python matplotlib绘制三维图的示例

    作者:catmelo 本文版权归作者所有 链接:https://www.cnblogs.com/catmelo/p/4162101.html 本文参考官方文档:http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html 起步 新建一个matplotlib.figure.Figure对象,然后向其添加一个Axes3D类型的axes对象. 其中Axes3D对象的创建,类似其他axes对象,只不过使用projection='3d'关键词. impo

  • 详解Python Matplotlib解决绘图X轴值不按数组排序问题

    在用Matplotlib库绘制折线图的时候遇到一个问题,当定义一个x轴数组时,plot绘制折线图时,x轴并不会按照我们定义的数组的顺序去排列显示,例如: import matplotlib.pyplot as plt colums_x = ['aa','bc','ad','bd'] colums_y = [12,14,10,15] plt.plot(colums_x,colums_y) plt.show() 我期望的是 X 轴能够按照: aa ,bc ,ad ,bd ,从左到右显示,但plt.s

  • 详解python 利用echarts画地图(热力图)(世界地图,省市地图,区县地图)

    首先安装对应的python模块 $ pip install pyecharts==0.5.10 $ pip install echarts-countries-pypkg $ pip install echarts-china-provinces-pypkg $ pip install echarts-china-cities-pypkg $ pip install echarts-china-counties-pypkg 世界地图 from pyecharts import Map value

随机推荐