基于Qt OpenCV实现图像数据采集软件

效果图

示例代码

#ifndef WIDGET_H
#define WIDGET_H

#include <QWidget>
#include<QTimer>
#include<QDebug>
#include<QDateTime>
#include<opencv2/opencv.hpp>

using namespace cv;
using namespace std;

QT_BEGIN_NAMESPACE
namespace Ui { class Widget; }
QT_END_NAMESPACE

class Widget : public QWidget
{
    Q_OBJECT

public:
    Widget(QWidget *parent = nullptr);
    ~Widget();

private slots:
    void updateLabel();//刷新label
    void on_button_getimage_start_clicked();

    void on_button_getimage_end_clicked();

    void on_button_opencapture_clicked();

private:
    Ui::Widget *ui;
    VideoCapture capture;
    QTimer *updatetimer;//视频刷新定时器
    Mat src;
    QImage image_src;
    bool saveflag;
    int i=0;
};
#endif // WIDGET_H
#include "widget.h"
#include "ui_widget.h"

Widget::Widget(QWidget *parent)
    : QWidget(parent)
    , ui(new Ui::Widget)
{
    ui->setupUi(this);
    saveflag=false;
    this->setWindowTitle("image capturer");
    //关于刷新
    updatetimer=new QTimer(this);
    connect(updatetimer,&QTimer::timeout,this,&Widget::updateLabel);
}

Widget::~Widget()
{
    delete ui;
}

//视频刷新
void Widget::updateLabel()
{
    if(!capture.isOpened())
    {
        qDebug()<<"capture error!";
        return;
    }
    else
    {
        capture>>src;
        if(src.empty())
        {
            qDebug()<<"src is empty!";
            return;
        }
        else
        {
            if(saveflag)
            {
                QDateTime now_time = QDateTime::currentDateTime();
                QString file_n_qstr="D:\\image_get\\cup\\"+now_time.toString("yyyyMMddhhmmss")+QString::number(i)+".jpg";
                string file_n_str=file_n_qstr.toStdString();
                imwrite(file_n_str,src);
                qDebug()<<file_n_qstr;
                i++;
                //save
            }
            //原图
            image_src =QImage((const unsigned char*)(src.data),src.cols,src.rows,src.cols*src.channels(),QImage::Format_BGR888);
            ui->label_show->setPixmap(QPixmap::fromImage(image_src));
        }
    }
}

void Widget::on_button_getimage_start_clicked()
{
    qDebug()<<"on_button_getimage_start_clicked";
    saveflag=true;
}

void Widget::on_button_getimage_end_clicked()
{
    qDebug()<<"on_button_getimage_end_clicked";
    saveflag=false;
}

void Widget::on_button_opencapture_clicked()
{
    qDebug()<<"start button is clicked";

    capture.open(0);
    if(!capture.isOpened())
    {
        qDebug()<<"open capture failed!";
    }
    else
    {
        updatetimer->start(30);
        qDebug()<<"open capture success!";
    }
}

到此这篇关于基于Qt OpenCV实现图像数据采集软件的文章就介绍到这了,更多相关Qt OpenCV图像数据采集软件内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们

(0)

相关推荐

  • 基于Qt OpenCV的图像灰度化像素操作详解

    效果图 实现代码 #ifndef WIDGET_H #define WIDGET_H #include <QWidget> #include<opencv2/opencv.hpp> using namespace cv; QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACE class Widget : public QWidget { Q_OBJECT public: Widget(QWidget *

  • 聊聊Qt+OpenCV联合开发之图像的创建与赋值问题

    目录 一.Mat基本结构 二.图像的克隆及拷贝 1.clone函数 2.copyTo函数 3.示例 三.创建图像 1.创建空白图像: 2.创建通道都为1的图: 3.拷贝和赋值的区别 3.1用Scalar函数设置m3对象为绿色 3.2m3赋值给m4,m4改为黄色 3.3拷贝m3给m4,m4改为黄色 一.Mat基本结构 1.Mat不但是一个非常有用的图像容器类,同时也是一个通用的矩阵类,它mat分为头部(包括图像的大小.宽高.类型.通道数等)和数据部分(像素的值的集合) 2.获取的mat对象赋值给另

  • 基于Qt OpenCV实现图像数据采集软件

    效果图 示例代码 #ifndef WIDGET_H #define WIDGET_H #include <QWidget> #include<QTimer> #include<QDebug> #include<QDateTime> #include<opencv2/opencv.hpp> using namespace cv; using namespace std; QT_BEGIN_NAMESPACE namespace Ui { class

  • 基于Python OpenCV实现图像的覆盖

    目录 前言 1.导入相关库 2.使用OpenCV读取和显示图像 3.从物体的图像中去除背景 4.添加对象到背景图像 5.结果展示 前言 在本文中,我将展示如何将对象从一个图像添加到另一个图像.为此,我们需要: 1.背景图像; 2.对象 3.对象的mask(mask为黑色,其他空间为白色). 在我们的例子中,背景是一张大海的照片,对象是一杯咖啡.在这里,他们是: 1.导入相关库 现在,使用jupiter notebook创建一个新文件.首先,我们需要导入必要的模块: import cv2 # Op

  • Python基于opencv的图像压缩算法实例分析

    本文实例讲述了Python基于opencv的图像压缩算法.分享给大家供大家参考,具体如下: 插值方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值. 函数 cvResize 将图像 src 改变尺寸得到与 dst 同样大小.若设定 ROI,函数将按

  • python 基于opencv 绘制图像轮廓

    图像轮廓概念 轮廓是一系列相连的点组成的曲线,代表了物体的基本外形. 谈起轮廓不免想到边缘,它们确实很像.简单的说,轮廓是连续的,边缘并不全都连续(下图).其实边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手:而轮廓主要用来分析物体的形态,比如物体的周长和面积等,可以说边缘包括轮廓. 寻找轮廓的操作一般用于二值图像,所以通常会使用阈值分割或Canny边缘检测先得到二值图. 注意:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一

  • python基于opencv 实现图像时钟

    解决方案详解 绘制表盘 表盘上只有60条分/秒刻线和12条小时刻线,当然还有表盘的外部轮廓圆,也就是重点在如何画72根线.先把简单的圆画出来: import cv2 as cv import math import datetime import numpy as np margin = 5 # 上下左右边距 radius = 220 # 圆的半径 center = (center_x, center_y) = (225, 225) # 圆心 # 1. 新建一个画板并填充成白色 img = np

  • Android基于OpenCV实现图像修复

    目录 API 操作 图像修复 实际应用中,图像常常容易受损,如存在污渍的镜头.旧照片的划痕.人为的涂画(比如马赛克),亦或是图像本身的损坏.将受到损坏的图像尽可能还原成原来的模样的技术,称之为图像修复.所谓修复,就代表图像大部分内容是完好的,所以,图像修复的原理,就是用完好的部分去推断受损部分的信息,特别是完好部分与受损部分的交界处,即受损区域的边缘,在这个推断过程中尤为重要. OpenCV给我们提供了inpaint方法来实现这个功能,并提供了两种图像修复的算法: 基于Navier-Stokes

  • Android基于OpenCV实现图像脱色

    目录 脱色 原理 API 操作 效果 源码 脱色 Imgproc.cvtColor(rgb, gray, Imgproc.COLOR_RGB2GRAY)可以快速的实现图片脱色,其通过简单的计算将三通道图像转换成单通道图像,经典的灰度转换公式如下: 但是转换过的图像存在对比度丢失,无法区分颜色的问题.OpenCV给我们提供另外一种脱色方法Photo.decolor,旨在最大限度的保留图片对比度. 原理 论文详情:www.cse.cuhk.edu.hk/~leojia/pro- 论文PDF:www.

  • 基于Python的OpenCV骨架化图像并显示(skeletonize)

    1. 效果图 自己画一张图,原图 VS 骨架效果图如下: opencv logo原图 VS 骨架化效果图如下: 2. 源码 # 图像骨架化~ import cv2 import imutils import numpy as np img = np.zeros((390, 390, 3), dtype="uint8") cv2.putText(img, "Beautiful Girl.....", (50, 190), cv2.FONT_HERSHEY_SIMPLE

  • 基于Python和openCV实现图像的全景拼接详细步骤

    基本介绍 图像的全景拼接,即"缝合"两张具有重叠区域的图来创建一张全景图.其中用到了计算机视觉和图像处理技术有:关键点检测.局部不变特征.关键点匹配.RANSAC(Random Sample Consensus,随机采样一致性)和透视变形. 具体步骤 (1)检测左右两张图像的SIFT关键特征点,并提取局部不变特征 : (2)使用knnMatch检测来自右图(左图)的SIFT特征,与左图(右图)进行匹配 : (3)计算视角变换矩阵H,用变换矩阵H对右图进行扭曲变换: (4)将左图(右图)

随机推荐