Pytorch可视化的几种实现方法
一,利用 tensorboardX 可视化网络结构
参考 https://github.com/lanpa/tensorboardX
支持scalar, image, figure, histogram, audio, text, graph, onnx_graph, embedding, pr_curve and video summaries.
例子要求tensorboardX>=1.2 and pytorch>=0.4
安装
pip install tensorboardX
或 pip install git+https://github.com/lanpa/tensorboardX
例子
# demo.py import torch import torchvision.utils as vutils import numpy as np import torchvision.models as models from torchvision import datasets from tensorboardX import SummaryWriter resnet18 = models.resnet18(False) writer = SummaryWriter() sample_rate = 44100 freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] for n_iter in range(100): dummy_s1 = torch.rand(1) dummy_s2 = torch.rand(1) # data grouping by `slash` writer.add_scalar('data/scalar1', dummy_s1[0], n_iter) writer.add_scalar('data/scalar2', dummy_s2[0], n_iter) writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter), 'xcosx': n_iter * np.cos(n_iter), 'arctanx': np.arctan(n_iter)}, n_iter) dummy_img = torch.rand(32, 3, 64, 64) # output from network if n_iter % 10 == 0: x = vutils.make_grid(dummy_img, normalize=True, scale_each=True) writer.add_image('Image', x, n_iter) dummy_audio = torch.zeros(sample_rate * 2) for i in range(x.size(0)): # amplitude of sound should in [-1, 1] dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate)) writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate) writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter) for name, param in resnet18.named_parameters(): writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter) # needs tensorboard 0.4RC or later writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter) dataset = datasets.MNIST('mnist', train=False, download=True) images = dataset.test_data[:100].float() label = dataset.test_labels[:100] features = images.view(100, 784) writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1)) # export scalar data to JSON for external processing writer.export_scalars_to_json("./all_scalars.json") writer.close()
运行: python demo.py
会出现runs文件夹,然后在cd到工程目录运行tensorboard --logdir runs
结果:
二,利用 vistom 可视化
参考:https://github.com/facebookresearch/visdom
安装和启动
安装: pip install visdom
启动:python -m visdom.server示例
from visdom import Visdom #单张 viz.image( np.random.rand(3, 512, 256), opts=dict(title=\\\\\'Random!\\\\\', caption=\\\\\'How random.\\\\\'), ) #多张 viz.images( np.random.randn(20, 3, 64, 64), opts=dict(title=\\\\\'Random images\\\\\', caption=\\\\\'How random.\\\\\') )
from visdom import Visdom image = np.zeros((100,100)) vis = Visdom() vis.text("hello world!!!") vis.image(image) vis.line(Y = np.column_stack((np.random.randn(10),np.random.randn(10))), X = np.column_stack((np.arange(10),np.arange(10))), opts = dict(title = "line", legend=["Test","Test1"]))
三,利用pytorchviz可视化网络结构
参考:https://github.com/szagoruyko/pytorchviz
到此这篇关于Pytorch可视化的几种实现方法的文章就介绍到这了,更多相关Pytorch可视化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
赞 (0)