Python入门学习Python流处理过程

目录
  • Faust是一个流处理库
    • 将kafka流中的思想移植到Python中
  • agent是一个async def的函数,因此它还可以异步执行其他操作
  • 使用Kafka topic作为“预写日志”
  • Faust支持任何类型的流数据
    • Faust是静态类型的
  • Faust简介
    • 高可用性
    • 分布式的
    • 快速
    • 灵活性
      • 安装
      • 绑定
      • 下载并从源文件中安装
      • 使用开发版本
      • 常见问题

Faust是一个流处理库

将kafka流中的思想移植到Python中

它被用于Robinhood去构建高性能的分布式系统和实时数据通道,每天处理数十亿的数据。

Faust同时提供流处理和事件处理同类型的工具分享例如:Kafka Streams, Apache Spark/Storm/Samza/Flink

它不需要使用一个DSL,仅需要用到Python!这意味着你在做流处理的时候可以使用所有你喜欢的Python库:

NumPy, PyTorch, Pandas, NLTK, Django, Flask, SQLAlchemy等等。

由于需要使用新的async/await语法和变量类型注释方法,Faust需要使用Python3.6以上的版本。

这里有一个处理输入命令流的示例:

这个agent装饰器定义了一个“流处理器”,它本质上是一个Kafka topic,并且可以对接收到的每个事件做一些处理。

agent是一个async def的函数,因此它还可以异步执行其他操作

如web请求。

这个系统可以持久化状态,执行方式类似于数据库。表被命名成分布式的key/value储存,你可以使用常规的Python字典来做这件事。

在每台机器上的本地用c++编写的超快嵌入式数据库(被称为RocksDB)存储表。

表还可以存储可选的“窗口”聚合计数,以便跟踪“前一天的单击次数”或“前一个小时的单击次数”。与Kafka流一样,我们支持滚动、跳跃和滑动时间窗口,旧窗口可以过期以阻止数据填充。

为了提高可靠性

使用Kafka topic作为“预写日志”

当一个密钥被更改时,我们将其发布到更新的日志上。备用节点使用这个更新日志来保存数据的精确副本,并在任何节点发生故障时支持立即恢复。

对于用户来说,表只是一个字典,但是数据在重新启动和跨节点复制之间存在,所以在故障发生时其他节点可以自动接管。

您可以通过URL统计页面浏览数量:

发送到Kafka topic的数据是分区的,这意味着点击数将用URL的这种方式进行分片。因此,同一个URL的每个计数都会立刻被传递给同一个Faust worker实例。

Faust支持任何类型的流数据

字节、Unicode和序列化结构,同时也支持使用现代Python语法的“模型”来描述流中的keys和value是如何被序列化的。

Faust是静态类型的

使用mypy类型检查器,所以您在编写应用程序时可以充分利用静态类型的优势。

Faust源代码很小,组织良好,是学习Kafka流实现的好资源。

在引言页学习更多关于Faust的知识.jpg

去阅读更多关于Faust,系统请求,安装指导,论坛资源等等,或者直接访问快速开始的教程。在一个编写流处理的应用中去查看关于Faust应用,然后通过使用者手册深入探讨。深层次的信息都根据不同主题在这个手册中进行说明

Faust简介

Faust非常容易使用。在学习其他的流处理方法时,你总是需要从一个复杂的hello-world工程和相应的基础要求开始学习。Faust仅仅需要Kafka,剩下的就是只需要Python,如果你知道Python的话你就可以直接使用Faust去做流处理的工作了,并且它可以整合和他相关的一切。

这儿有一个简单的应用程序你可以做:源代码是Python的

您可能会被async和await这两个关键字吓到,但是您在使用Faust时不需要知道asyncio是如何工作的:只要模仿这些例子就可以得到您想要的结果。

示例应用程序启动两个任务:一个是处理流,另一个是向流发送事件的后台线程。在实际的应用程序中,您的系统将向Kafka topic发布事件,您的处理器可以从Kafka topic获取事件信息,并且只需要后台线程将数据输入到我们的示例中。

高可用性

Faust是高度可用的,并且可以在网络问题和服务器崩溃中生存下来。在节点失败的情况下,它可以自动恢复,并且表将接管备用节点。

分布式的

根据您的应用程序的需要启动更多实例。

快速

一个单内核的Faust worker实例已经可以每秒处理数万个事件,我们有理由相信,一旦我们能够支持一个更优化的Kafka客户端,吞吐量就会增加。

灵活性

Faust就是Python,而流是一个无限的异步迭代器。如果您知道如何使用Python,那么您已经知道如何使用Faust,它可以与您喜欢的Python库一起使用,比如Django、Flask、SQLAlchemy、NTLK、NumPy、Scikit、TensorFlow等等。最后,如果你的时间不是很紧张,并且又想快速的提高,最重要的是不怕吃苦,建议你可以联系维:762459510 ,那个真的很不错,很多人进步都很快,需要你不怕吃苦哦!大家可以去添加上看一下~

安装

您可以通过Python包或从源文件中安装Faust

使用pip安装它:

绑定

Faust还定义了一组setuptools扩展,可以用来安装Faust,并且有一个给定特性的依赖关系。

您可以在您的需求中或在pip命令行中使用方括号来指定它们。使用逗号分隔多个包:

以下的绑定均是有效的:

商店

最优化

传感器

事件循环

调试

下载并从源文件中安装

您可以这样安装它:

如果当前没有使用virtualenv,则必须以特权用户的身份执行最后一个命令。

使用开发版本

您可以使用以下pip命令安装Faust的最新版本:

常见问题

Faust可以在Django/Flask/etc上使用吗?

使用gevent

这种方法适用于任何可以与gevent一起工作的阻塞Python库。

使用gevent需要您安装aiogevent模块,您可以将其作为Faust的包进行安装:

然后要真正的使用gevent作为事件循环,您要么在faust程序中使用-L <faust --loop>

命令:

要么在你脚本的前面加入import mode.loop.gevent

记住:非常重要的一点是,它位于模块的最顶端,并且在导入库之前执行。

使用eventlet

这种方法适用于任何可以使用eventlet的阻塞Python库。

使用eventlet需要您安装aioeventlet模块,您可以将其安装为与Faust一起的捆绑包。

然后要实际使用eventlet作为事件循环,您要么在faust程序中使用-L <faust --loop>

命令:

要么在你脚本的前面加入import mode.loop.gevent

警告

非常重要的是,它位于模块的最顶端,并且在导入库之前执行。

Faust可以在Tornado上使用吗?

可以!使用tornado.platform.asyncio

链接:http://www.tornadoweb.org/en/stable/asyncio.html

Faust可以在Twisted上使用吗?

可以!使用asyncio反应器实现:

链接:https://twistedmatrix.com/documents/17.1.0/api/twisted.internet.asyncioreactor.html

是否支持Python3.5或者更早的版本?

目前还没有支持Python 3.5的计划,但是欢迎您为这个项目做出贡献。

以下是实现这一目标所需的一些步骤

  • 源代码转换以重写变量注释到注释

示例,代码:

  • 重写异步函数的源代码转换

示例,代码:

必须重写:

你将支持Python2吗?

目前还没有支持Python 2的计划,但是欢迎您为项目做贡献(上面问题中的细节也与Python 2相关)。

在本地运行Faust应用程序时,我得到的打开文件的最大数量超过了RocksDB的错误。我该怎么解决这个问题呢

您可能需要增加打开文件的最大数量的限制。

资源

编码规范

在项目代码库、问题跟踪器、聊天室和邮件列表中进行交互的每个人都应该遵循《Faust行为准则》。

作为这些项目的贡献者和维护者,为了培养开放和受欢迎的社区,我们承诺尊重所有通过报告问题、发布特性请求、更新文档、提交合并请求或补丁和其他活动的人。

我们致力于使参与这些项目的每个人都无骚扰体验,不论其经验水平、性别、性别认同和表现、性取向、残疾、个人外貌、体型、种族、种族、年龄、宗教或国籍。

参与者不良行为包括:

  • 性化的语言或意象的使用
  • 个人人身攻击
  • 恶意破坏或侮辱/侮辱性的评论
  • 公共或者私人的骚扰
  • 未经明确许可,发布他人的私人信息,如住址或电子地址
  • 其他不道德或不专业的行为。

项目维护人员有权利和责任删除、编辑或拒绝评论、提交、代码、wiki编辑、问题和其他与行为准则不一致的贡献。通过采用这一行为准则,项目维护者承诺在管理这个项目的每个方面都公平、一致地应用这些原则。不遵守或执行行为准则的项目维护者可能被永久地从项目团队中删除。

当个人代表项目或社区时,此行为准则适用于项目空间和公共空间。

可以通过创建一个问题或联系一个或多个项目负责人来举报虐待、骚扰或其他不可接受行为。

以上就是Python入门学习Python流处理过程的详细内容,更多关于Python入门的资料请关注我们其它相关文章!

(0)

相关推荐

  • 对Python捕获控制台输出流的方法详解

    有时候我们的代码里可能要调用控制台命令,比如我想用Python写一个批量编译 .java 文件的脚本,用到如下代码 常规用法 os.system import os,traceback try: p = os.system("javac Test.java") print p except: print "\nexcept:\n" print traceback.format_exc() 如然编译成功会返回一个0,如果错误会返回一个非0的值给p,这种方法可以知道执行

  • Python读取实时数据流示例

    1.#coding:utf-8 chose = [ ('foo',1,2), ('bar','hello'), ('foo',3,4) ] def do_foo(x,y): print('foo',x,y) def do_bar(s): print('bar',s) for tag,*args in chose: if tag == 'foo': do_foo(*args) elif tag == 'bar': do_bar(*args) line = 'nobody:*:-2:-2:Unpri

  • Python文件和流(实例讲解)

    1.文件写入 #打开文件,路径不对会报错 f = open(r"C:\Users\jm\Desktop\pyfile.txt","w") f.write("Hello,world!\n") f.close() 2.文件读取 #读取 f = open(r"C:\Users\jm\Desktop\pyfile.txt","r") print(f.read()) f.close() 输出: Hello,world

  • Python 处理文件的几种方式

    在这个世界上,人们每天都在用 Python 完成着不同的工作.而文件操作,则是大家最常需要解决的任务之一.使用 Python,你可以轻松为他人生成精美的报表,也可以用短短几行代码快速解析.整理上万份数据文件. 当我们编写与文件相关的代码时,通常会关注这些事情:我的代码是不是足够快?我的代码有没有事半功倍的完成任务? 在这篇文章中,我会与你分享与之相关的几个编程建议.我会向你推荐一个被低估的 Python 标准库模块.演示一个读取大文件的最佳方式.最后再分享我对函数设计的一点思考. 下面,让我们进

  • Python入门学习Python流处理过程

    目录 Faust是一个流处理库 将kafka流中的思想移植到Python中 agent是一个async def的函数,因此它还可以异步执行其他操作 使用Kafka topic作为"预写日志" Faust支持任何类型的流数据 Faust是静态类型的 Faust简介 高可用性 分布式的 快速 灵活性 安装 绑定 下载并从源文件中安装 使用开发版本 常见问题 Faust是一个流处理库 将kafka流中的思想移植到Python中 它被用于Robinhood去构建高性能的分布式系统和实时数据通道

  • Python入门学习之Python流处理过程

    目录 Faust简介 高可用性 分布式的 快速 灵活性 安装 绑定 下载并从源文件中安装 使用开发版本 常见问题 Faust是一个流处理库,将kafka流中的思想移植到Python中 它被用于Robinhood去构建高性能的分布式系统和实时数据通道,每天处理数十亿的数据. Faust同时提供流处理和事件处理同类型的工具分享例如:Kafka Streams, Apache Spark/Storm/Samza/Flink 它不需要使用一个DSL,仅需要用到Python!这意味着你在做流处理的时候可以

  • Python入门学习指南分享

    对于初学者,入门至关重要,这关系到初学者是从入门到精通还是从入门到放弃.以下是结合Python的学习经验,整理出的一条学习路径,主要有四个阶段 NO.1 新手入门阶段,学习基础知识 总体来讲,找一本靠谱的书,由浅入深,边看边练. 网上的学习教程有很多,多到不知道如何选择.所有教程在基础知识介绍方面都差不多,区别在于讲的是否足够细(例如运行原理)以及是否有足够的练习.目前推荐大家看书<Python编程 从入门到实践> ,作者是美国教师,内容从基础知识开始,循序渐进,层层深入,适合零基础者.课程内

  • ​​​​​​​Python 入门学习之函数式编程

    目录 前言 把函数作为对象 把对象作为函数 数据结构内的函数 把函数作为参数和返回值 嵌套函数 单表达式函数(Lambda 表达式) Map.Filter 和 Reduce Map Filter Reduce 前言 本文对 Python 中的函数式编程技术进行了简单的入门介绍. 在 Python 中,函数是「头等公民」(first-class).也就是说,函数与其他数据类型(如 int)处于平等地位. 因而,我们可以将函数赋值给变量,也可以将其作为参数传入其他函数,将它们存储在其他数据结构(如

  • python入门学习之自带help功能初步使用示例

    目录 python help使用 modules keywords symbols python help使用 C:\Users\wusong>python Python 3.8.2rc1 (tags/v3.8.2rc1:8623e68, Feb 11 2020, 10:46:21) [MSC v.1916 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or &qu

  • Python入门学习之类的相关知识总结

    前言 Python是面向对象的程序设计(Object Oriented Programming). 面向对象的程序设计的一条基本原则是: 计算机程序由多个能够起到子程序作用的单元或者对象组合而成. 面向对象的程序设计的一个关键性概念是: 数据以及数据的操作(即函数方法)封装在一起. 这个概念对于接触C++的我来说已经很熟悉了.就是"类"Class. Python完全支持所有面向对象的基本功能,比如: "封装"."继承"."多态"

  • python入门学习关于for else的特殊特性讲解

    目录 For-Else 特性的基础知识 使用 For-Else 特性的三个场景 1. 迭代并查找没有标志变量的项 2. 帮助打破嵌套循环 3. 帮助处理异常 总结 不管我们使用哪种编程语言,我们都会写"if-else"语句,但是"for-else"怎么样呢? 对于许多语言,例如 c. c + + 和 Java,如果在循环之后使用"else",那是完全错误的.然而,Python 作为一种优雅的语言,有这种奇怪但有用的特性.如果我们正确地使用它,我们

  • python入门教程 python入门神图一张

    初试牛刀 假设你希望学习Python这门语言,却苦于找不到一个简短而全面的入门教程.那么本教程将花费十分钟的时间带你走入Python的大门.本文的内容介于教程(Toturial)和速查手册(CheatSheet)之间,因此只会包含一些基本概念.很显然,如果你希望真正学好一门语言,你还是需要亲自动手实践的.在此,我会假定你已经有了一定的编程基础,因此我会跳过大部分非Python语言的相关内容.本文将高亮显示重要的关键字,以便你可以很容易看到它们.另外需要注意的是,由于本教程篇幅有限,有很多内容我会

  • 新手入门学习python Numpy基础操作

    NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.是在学习机器学习.深度学习之前应该掌握的一个非常基本且实用的Python库. 导入库,创建数组 import numpy as np a = np.arraya = np.array([0, 1, 2, 3, 4] ) #使用array函数 a = np.array([[11, 12, 13, 14, 15], [16, 17, 18, 1

  • Python入门学习之字符串与比较运算符

    Python字符串 字符串或串(String)是由数字.字母.下划线组成的一串字符. 一般记为 : s="a1a2···an"(n>=0) 它是编程语言中表示文本的数据类型. python的字串列表有2种取值顺序: 从左到右索引默认0开始的,最大范围是字符串长度少1 从右到左索引默认-1开始的,最大范围是字符串开头 如果你的实要取得一段子串的话,可以用到变量[头下标:尾下标],就可以截取相应的字符串,其中下标是从0开始算起,可以是正数或负数,下标可以为空表示取到头或尾. 比如:

随机推荐