Linux运维基础进程管理及环境组成分析

1.进程基本概述

进程是已启动的可执行程序的运行中实例。

/proc目录下以数字为名的目录,每一个目录代表一个进程,保存着进程的属性信息。

每一个进程的PID是唯一的,就算进程退出了,其它进程也不会占用其PID

2.进程的组成部分

  • 已分配内存的地址空间
  • 安全属性,包括所有权凭据和特权
  • 程序代码的一个或多个执行线程
  • 进程状态

3.进程的环境

  • 本地和全局变量
  • 当前调度上下文
  • 分配的系统资源,如文件描述符和网络端口

4.进程状态

标志 内核定义的状态名称和描述
R TASK_RUNNING:进程正在CPU上执行,或者正在等待运行。处于运行中(或可运行)状态时,进程可能正在执行用户例程或内核例程(系统调用),或者已排队并就绪
S TASK_INTERRUPTIBLE:进程处于睡眠状态且正在等待某一条件:硬件请求、系统资源访问或信号。当事件或信号满足该条件时,该进程将返回到运行中
D TASK_UNINTERRUPTIBLE:此进程也在睡眠,但与S状态不同,不会响应传递的信号。仅在特定的条件下使用,其中进程中断可能会导致意外的设备状态
K TASK_KILLABLE:进程处于睡眠状态,与不可中断的D状态相同,但有所修改,允许等待中的任务通过响应信号而被中断(彻底退出)。实用程序通常将可中断的进程显示为D状态
T TASK_STOPPED:进程已被停止(暂停),通常是通过用户或其他进程发出的信号。进程可以通过另一信号返回到运行中状态,继续执行(恢复)
T TASK_TRACED:正在被调试的进程也会临时停止,并且共享同一个T状态标志
Z EXIT_ZOMBIE:子进程在退出时向父进程发出信号。除进程身份(PID)之外的所有资源都已释放
X EXIT_DEAD:当父进程清理(获取)剩余的子进程结构时,进程现在已彻底释放。此状态从不会在进程列出实用程序中看到
< 高优先级进程
N 低优先级进程
+ 前台进程组中的进程
l 多线程进程
s 会话进程首进程

5.进程优先级

  • <0-139>:数字越小,优先级越高!
  • <0-99>:实时优先级,内核调整
  • <100-139>:静态优先级,用户可控制

6.进程管理命令

ps命令用于列出当前的进程。可以显示详细的进程信息

[root@localhost ~]# ps -e
    PID TTY          TIME CMD
      1 ?        00:00:02 systemd
      2 ?        00:00:00 kthreadd
[root@localhost ~]# ps aux
USER         PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root           1  0.0  0.6 179032 13504 ?        Ss   Nov03   0:02 /usr/lib/syst
root           2  0.0  0.0      0     0 ?        S    Nov03   0:00 [kthreadd]
root           3  0.0  0.0      0     0 ?        I<   Nov03   0:00 [rcu_gp]
root           4  0.0  0.0      0     0 ?        I<   Nov03   0:00 [rcu_par_gp]
root           6  0.0  0.0      0     0 ?        I<   Nov03   0:00 [kworker/0:0H
root           8  0.0  0.0      0     0 ?        I<   Nov03   0:00 [mm_percpu_wq
root           9  0.0  0.0      0     0 ?        S    Nov03   0:00 [ksoftirqd/0]
root          10  0.0  0.0      0     0 ?        R    Nov03   0:00 [rcu_sched]
root          11  0.0  0.0      0     0 ?        S    Nov03   0:00 [migration/0]
root          12  0.0  0.0      0     0 ?        S    Nov03   0:00 [watchdog/0]
root          13  0.0  0.0      0     0 ?        S    Nov03   0:00 [cpuhp/0]
root          15  0.0  0.0      0     0 ?        S    Nov03   0:00 [kdevtmpfs]
root          16  0.0  0.0      0     0 ?        I<   Nov03   0:00 [netns]
root          17  0.0  0.0      0     0 ?        S    Nov03   0:00 [kauditd]
root          18  0.0  0.0      0     0 ?        S    Nov03   0:00 [khungtaskd]
root          19  0.0  0.0      0     0 ?        S    Nov03   0:00 [oom_reaper]
root          20  0.0  0.0      0     0 ?        I<   Nov03   0:00 [writeback]
root          21  0.0  0.0      0     0 ?        S    Nov03   0:00 [kcompactd0]
root          22  0.0  0.0      0     0 ?        SN   Nov03   0:00 [ksmd]
root          23  0.0  0.0      0     0 ?        SN   Nov03   0:00 [khugepaged]
root          24  0.0  0.0      0     0 ?        I<   Nov03   0:00 [crypto]
root          25  0.0  0.0      0     0 ?        I<   Nov03   0:00 [kintegrityd]
root          26  0.0  0.0      0     0 ?        I<   Nov03   0:00 [kblockd]
root          27  0.0  0.0      0     0 ?        I<   Nov03   0:00 [tpm_dev_wq]
root          28  0.0  0.0      0     0 ?        I<   Nov03   0:00 [md]
root          29  0.0  0.0      0     0 ?        I<   Nov03   0:00 [edac-poller]
root          30  0.0  0.0      0     0 ?        S    Nov03   0:00 [watchdogd]
root          47  0.0  0.0      0     0 ?        S    Nov03   0:00 [kswapd0]
root         140  0.0  0.0      0     0 ?        I<   Nov03   0:00 [kthrotld]
root         141  0.0  0.0      0     0 ?        S    Nov03   0:00 [irq/24-pcieh
root         142  0.0  0.0      0     0 ?        S    Nov03   0:00 [irq/25-pcieh
root         143  0.0  0.0      0     0 ?        S    Nov03   0:00 [irq/26-pcieh
root         144  0.0  0.0      0     0 ?        S    Nov03   0:00 [irq/27-pcieh
root         145  0.0  0.0      0     0 ?        S    Nov03
[root@localhost ~]# ps -ef
UID          PID    PPID  C STIME TTY          TIME CMD
root           1       0  0 Nov03 ?        00:00:02 /usr/lib/systemd/systemd --s
root           2       0  0 Nov03 ?        00:00:00 [kthreadd]
root           3       2  0 Nov03 ?        00:00:00 [rcu_gp]
root           4       2  0 Nov03 ?        00:00:00 [rcu_par_gp]
root           6       2  0 Nov03 ?        00:00:00 [kworker/0:0H-k

7.vmstat

虚拟内存状态查看命令

vmstat 1000 //表示每1000秒刷新一次
vmstat 1000 5 //表示每1000秒刷新一次,刷新5次后退出

[root@localhost ~]# vmstat 1000
procs:
    r(running)  //表示等待运行的队列长度,也即等待运行的进程的个数
    b(block)    //表示阻塞队列长度,也即处于不可中断睡眠态的进程个数
memory:
    swpd        //交换内存的使用总量
    free        //空闲物理内存总量
    buffer      //用于buffer的内存总量
    cache       //用于cache的内存总量
swap:
    si(swap in)     //表示从物理内存有多少页面换进swap,也即数据进入swap的数据速率(kb/s)
    so(swap out)    //表示从swap有多少页面换进物理内存,也即数据离开swap的数据速率(kb/s)
io:
    bi(block in)    //表示磁盘块有多少个被调入内存中,也即从块设备读入数据到系统的速率(kb/s)
    bo(block out)   //表示有多少个磁盘块从内存中被同步到硬盘上去了,也即保存数据至块设备的速率(kb/s)
system:
    in( interrupts)     //表示中断的个数,也即中断速率(kb/s)
    cs(context switch)  //表示上下文切换的次数,也即进程切换速率(kb/s)
CPU:
    us      //表示用户空间
    sy      //表示内核空间
    id      //表示空闲百分比
    wa      //表示等待IO完成所占据的时间百分比
    st      //表示steal,被虚拟化技术偷走的时间(比如运行虚拟机)

8..后台运行作业

//在命令后跟上&符号可以生成一个后台作业
[root@localhost ~]# sleep 1000 &
[1] 1400
//jobs命令用于显示当前所有的后台作业
[root@localhost ~]# jobs
[1]+  Running                 sleep 1000 &
//fg命令用于将后台作业调至前台运行
[root@localhost ~]# fg
//当只有一个后台作业时,直接使用fg命令,不跟任何参数即可将后台作业调至前台运行,但是当有多个作业时则必须跟上%+作业号,也就是上面命令执行结果中以[]括起来的数字。
[root@localhost ~]# jobs
[1]-  Running                 sleep 1000 &
[2]+  Running                 sleep 500 &
[root@localhost ~]# fg %1
//使用ctrl+z可将前台进程发送到后台,此时作业将处于停止状态
[root@localhost ~]# fg %1
sleep 1000
^Z
[1]+  Stopped                 sleep 1000
//使用bg命令+作业号可使后台已停止的作业重新运行
[root@localhost ~]# bg %1
[1]+ sleep 1000 &
[root@localhost ~]# jobs
[1]-  Running                 sleep 1000 &
[2]+  Running                 sleep 500 &
//kill加上作业号可以手动杀死指定作业
[root@localhost ~]# jobs
[1]-  Running                 sleep 1000 &
[2]+  Running                 sleep 500 &
[root@localhost ~]# kill %1
[1]-  Terminated              sleep 1000
[root@localhost ~]# jobs
[2]+  Running                 sleep 500 &
//jobs命令的结果中
    +       //命令将默认操作的作业
    -     //命令将第二个默认操作的作业

以上就是Linux运维基础进程管理及环境组成分析的详细内容,更多关于Linux进程管理及环境组成的资料请关注我们其它相关文章!

(0)

相关推荐

  • Linux运维基础交换分区和lvm管理教程

    目录 1.交换分区SWAP 1.1创建swapfile 1.2格式化swap分区 1.3检测当前swap分区情况 1.4开启新建的SWAP分区 1.5关闭新建的swap分区 1.6给新区增加一个交换分区swap 2. lvm管理 步骤lvm 1.准备物理磁盘(加磁盘参考上一博客) 3.卷组管理 扩展卷组,将新磁盘加入卷组 4.逻辑卷管理 逻辑卷扩展的容量不能超过卷组的容量 对ext4文件系统的逻辑卷裁剪容量 首先自己创建一个1G的逻辑卷作为裁剪的对象 1.如果已经挂载,必须先卸载 2.裁剪容量,

  • Linux运维基础系统磁盘管理教程

    1.磁盘分区: 2.fdisk分区 磁盘小于2t用fdisk分区,大于2t用gdisk分区 1.查看磁盘情况 [root@localhost ~]# lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT fd0 2:0 1 4K 0 disk sda 8:0 0 20G 0 disk ├─sda1 8:1 0 500M 0 part /boot └─sda2 8:2 0 19.5G 0 part ├─rhel-root 253:0 0 17.5G 0 lvm

  • linux系列之常用运维命令整理笔录(小结)

    本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 一.系统监控 1.free命令 free 命令能够显示系统中物理上的空闲和已用内存,还有交换内存,同时,也能显示被内核使用的缓冲和缓存 语法:free [param] param可以为: -b:以Byte为单位显示内存使用情况: -k:以KB为单位显示内存使

  • Linux运维基础进程管理实时监控控制

    目录 1.后台运行作业 2.使用信号控制进程 基本进程管理信号 3.监控进程活动 IO负载 4.实时进程监控 top用于实现全屏动态显示系统信息 1.后台运行作业 1.sleep 999 & (运行作业) [root@localhost ~]# sleep 999 & [1] 3670 2.ps -ef|grep sleep(查看进程) [root@localhost ~]# ps -ef|grep sleep root 3670 3642 0 10:54 pts/1 00:00:00 s

  • Linux运维基础进程管理及环境组成分析

    1.进程基本概述 进程是已启动的可执行程序的运行中实例. /proc目录下以数字为名的目录,每一个目录代表一个进程,保存着进程的属性信息. 每一个进程的PID是唯一的,就算进程退出了,其它进程也不会占用其PID 2.进程的组成部分 已分配内存的地址空间 安全属性,包括所有权凭据和特权 程序代码的一个或多个执行线程 进程状态 3.进程的环境 本地和全局变量 当前调度上下文 分配的系统资源,如文件描述符和网络端口 4.进程状态 标志 内核定义的状态名称和描述 R TASK_RUNNING:进程正在C

  • Linux运维基础httpd静态网页教程

    目录 1.利用仓库创建httpd lrzsz unzip文件 2.对源码文件进行解压 3.配置httpd-vhosts.conf的3种方法 方法1:(相同IP,不同端口号配置) 方法2:(不同IP,相同端口号配置) 方法3:(相同IP,相同端口号,不同域名) 1.利用仓库创建httpd lrzsz unzip文件 1.挂载 [root@clq0917 ~]# mount /dev/cdrom /mnt/ mount: /dev/sr0 写保护,将以只读方式挂载 写配置文件 [root@clq09

  • Linux运维从初级进阶为高级知识点总结

    运维工程师在前期是一个很苦逼的工作,在这期间可能干着修电脑.掐网线.搬机器的活,显得没地位!时间也很碎片化,各种零碎的琐事围绕着你,很难体现个人价值,渐渐的对行业很迷茫,觉得没什么发展前途. 这些枯燥无味工作的确会使人匮乏,从技术层面讲这些其实都是基本功,对后期的运维工作会无形中带来一定的帮助,因为我也是这么过来的,能深刻体会到.所以在这个时期一定要保持积极向上的心态,持续的学习.在未来的某一天,相信会回报给你的! 好了,进入正题,根据我多年的运维工作经验,给大家分享下高级运维工程师学习路线.

  • Linux运维工具Supervisor的安装使用(进程管理工具)

    一.介绍 Supervisor是用Python开发的一套通用的进程管理程序,能将一个普通的命令行进程变为后台daemon,并监控进程状态,异常退出时能自动重启.目前Supervisor可以运行在大多数Unix系统上,但不支持在Windows系统上运行.Supervisor需要Python2.4及以上版本,但任何Python 3版本都不支持. 二.自带Web管理程序 Supervisor有四个组件: 1. supervisord 运行Supervisor的后台服务,它用来启动和管理那些你需要Sup

  • Linux运维之如何使用ss命令代替netstat

    前言 在运维和管理 Linux 服务器的时候,我们最常用的一个命令就是 netstat,我常用这个命令来查看当前服务器上有哪些进程正在侦听端口,主要用来诊断网络服务的工作状态. 不过,最近有一次安装好一个 Ubuntu 发型版,发现默认没有安装 netstat,觉得非常奇怪,自己手动安装后,发现 man pages 提示,netstat 命令已经是 deprecated 了,建议使用 ss 命令代替. This program is mostly obsolete. Replacement fo

  • Linux运维常用命令

    自己的小网站跑在阿里云的ECS上面,偶尔也去分析分析自己网站服务器日志,看看网站的访问量.看看有没有黑阔搞破坏!于是收集,整理一些服务器日志分析命令,大家可以试试! 1.查看有多少个IP访问:  awk '{print $1}' log_file|sort|uniq|wc -l PS: wc -l 看看有多少行 2.查看某一个页面被访问的次数: grep "/index.php" log_file | wc -l 3.查看每一个IP访问了多少个页面: awk '{++S[$1]} EN

  • 详解Linux运维CentOS系统SVN双备份Shell脚本

    前言 SVN是Subversion的简称,是一个开放源代码的版本控制系统,采用了分支管理系统.说得简单一点SVN就是用于多个人共同开发同一个项目,共用资源的目的. 作为一个代码管理工具,备份操作显得尤为重要,这里采取这样的备份策略:在执行本地备份的同时,让Shell脚本自动上传数据到另一台FTP备份服务器中,这种异地备份策略成本比较小,无需存储,而且安全系统高,想到与双备份,本地和异地同时出现数据损坏的概率是低很多的. 备份策略说明 使用CentOS 6系列系统,安装vsftpd,修改配置参数.

随机推荐