Python如何读取、写入CSV数据

问题

你想读写一个CSV格式的文件。

解决方案

对于大多数的CSV格式的数据读写问题,都可以使用 csv 库。、例如,假设你在一个名叫stocks.csv文件中有一些股票市场数据,就像这样:

下面向你展示如何将这些数据读取为一个元组的序列:

import csv
with open('stocks.csv') as f:
 f_csv = csv.reader(f)
 headers = next(f_csv)
 for row in f_csv:
  # Process row
  ...

在上面的代码中,row 会是一个元组。因此,为了访问某个字段,你需要使用下标,如row[0]访问Symbol,row[4]访问Change。

由于这种下标访问通常会引起混淆,你可以考虑使用命名元组。例如:

from collections import namedtuple
with open('stock.csv') as f:
 f_csv = csv.reader(f)
 headings = next(f_csv)
 Row = namedtuple('Row', headings)
 for r in f_csv:
  row = Row(*r)
  # Process row
  ...

它允许你使用列名如 row.Symbol 和 row.Change 代替下标访问。需要注意的是这个只有在列名是合法的Python标识符的时候才生效。如果不是的话,你可能需要修改下原始的列名(如将非标识符字符替换成下划线之类的)。

另外一个选择就是将数据读取到一个字典序列中去。可以这样做:

import csv
with open('stocks.csv') as f:
 f_csv = csv.DictReader(f)
 for row in f_csv:
  # process row
  ...

在这个版本中,你可以使用列名去访问每一行的数据了。比如,row['Symbol'] 或者 row['Change'] 。

为了写入CSV数据,你仍然可以使用csv模块,不过这时候先创建一个 writer 对象。例如;

headers = ['Symbol','Price','Date','Time','Change','Volume']
rows = [('AA', 39.48, '6/11/2007', '9:36am', -0.18, 181800),
   ('AIG', 71.38, '6/11/2007', '9:36am', -0.15, 195500),
   ('AXP', 62.58, '6/11/2007', '9:36am', -0.46, 935000),
  ]

with open('stocks.csv','w') as f:
 f_csv = csv.writer(f)
 f_csv.writerow(headers)
 f_csv.writerows(rows)

如果你有一个字典序列的数据,可以像这样做:

headers = ['Symbol', 'Price', 'Date', 'Time', 'Change', 'Volume']
rows = [{'Symbol':'AA', 'Price':39.48, 'Date':'6/11/2007',
  'Time':'9:36am', 'Change':-0.18, 'Volume':181800},
  {'Symbol':'AIG', 'Price': 71.38, 'Date':'6/11/2007',
  'Time':'9:36am', 'Change':-0.15, 'Volume': 195500},
  {'Symbol':'AXP', 'Price': 62.58, 'Date':'6/11/2007',
  'Time':'9:36am', 'Change':-0.46, 'Volume': 935000},
  ]

with open('stocks.csv','w') as f:
 f_csv = csv.DictWriter(f, headers)
 f_csv.writeheader()
 f_csv.writerows(rows)

讨论

你应该总是优先选择csv模块分割或解析CSV数据。例如,你可能会像编写类似下面这样的代码:

with open('stocks.csv') as f:
for line in f:
 row = line.split(',')
 # process row
 ...

使用这种方式的一个缺点就是你仍然需要去处理一些棘手的细节问题。比如,如果某些字段值被引号包围,你不得不去除这些引号。另外,如果一个被引号包围的字段碰巧含有一个逗号,那么程序就会因为产生一个错误大小的行而出错。

默认情况下,csv 库可识别Microsoft Excel所使用的CSV编码规则。这或许也是最常见的形式,并且也会给你带来最好的兼容性。然而,如果你查看csv的文档,就会发现有很多种方法将它应用到其他编码格式上(如修改分割字符等)。例如,如果你想读取以tab分割的数据,可以这样做:

# Example of reading tab-separated values
with open('stock.tsv') as f:
 f_tsv = csv.reader(f, delimiter='\t')
 for row in f_tsv:
  # Process row
  ...

如果你正在读取CSV数据并将它们转换为命名元组,需要注意对列名进行合法性认证。例如,一个CSV格式文件有一个包含非法标识符的列头行,类似下面这样:

这样最终会导致在创建一个命名元组时产生一个 ValueError 异常而失败。为了解决这问题,你可能不得不先去修正列标题。例如,可以像下面这样在非法标识符上使用一个正则表达式替换:

import re
with open('stock.csv') as f:
 f_csv = csv.reader(f)
 headers = [ re.sub('[^a-zA-Z_]', '_', h) for h in next(f_csv) ]
 Row = namedtuple('Row', headers)
 for r in f_csv:
  row = Row(*r)
  # Process row
  ...

还有重要的一点需要强调的是,csv产生的数据都是字符串类型的,它不会做任何其他类型的转换。如果你需要做这样的类型转换,你必须自己手动去实现。下面是一个在CSV数据上执行其他类型转换的例子:

col_types = [str, float, str, str, float, int]
with open('stocks.csv') as f:
 f_csv = csv.reader(f)
 headers = next(f_csv)
 for row in f_csv:
  # Apply conversions to the row items
  row = tuple(convert(value) for convert, value in zip(col_types, row))
  ...

另外,下面是一个转换字典中特定字段的例子:

print('Reading as dicts with type conversion')
field_types = [ ('Price', float),
    ('Change', float),
    ('Volume', int) ]

with open('stocks.csv') as f:
 for row in csv.DictReader(f):
  row.update((key, conversion(row[key]))
    for key, conversion in field_types)
  print(row)

通常来讲,你可能并不想过多去考虑这些转换问题。在实际情况中,CSV文件都或多或少有些缺失的数据,被破坏的数据以及其它一些让转换失败的问题。因此,除非你的数据确实有保障是准确无误的,否则你必须考虑这些问题(你可能需要增加合适的错误处理机制)。

最后,如果你读取CSV数据的目的是做数据分析和统计的话,你可能需要看一看 Pandas 包。Pandas 包含了一个非常方便的函数叫 pandas.read_csv() ,它可以加载CSV数据到一个 DataFrame 对象中去。然后利用这个对象你就可以生成各种形式的统计、过滤数据以及执行其他高级操作了。

以上就是Python如何读写CSV数据的详细内容,更多关于Python读写CSV数据的资料请关注我们其它相关文章!

(0)

相关推荐

  • python读取当前目录下的CSV文件数据

    在处理数据的时候,经常会碰到CSV类型的文件,下面将介绍如何读取当前目录下的CSV文件,步骤如下 1.获取当前目录所有的CSV文件名称: #创建一个空列表,存储当前目录下的CSV文件全称 file_name = [] #获取当前目录下的CSV文件名 def name(): #将当前目录下的所有文件名称读取进来 a = os.listdir() for j in a: #判断是否为CSV文件,如果是则存储到列表中 if os.path.splitext(j)[1] == '.csv': file_

  • 解决Python中pandas读取*.csv文件出现编码问题

    1.问题 在使用Python中pandas读取csv文件时,由于文件编码格式出现以下问题: Traceback (most recent call last): File "pandas\_libs\parsers.pyx", line 1134, in pandas._libs.parsers.TextReader._convert_tokens File "pandas\_libs\parsers.pyx", line 1240, in pandas._libs

  • python读取csv文件指定行的2种方法详解

    csv是Comma-Separated Values的缩写,是用文本文件形式储存的表格数据,比如如下的表格 就可以存储为csv文件,文件内容是: No.,Name,Age,Score 1,Apple,12,98 2,Ben,13,97 3,Celia,14,96 4,Dave,15,95 假设上述csv文件保存为"A.csv",如何用Python像操作Excel一样提取其中的一行,也就是一条记录,利用Python自带的csv模块,有2种方法可以实现: 方法一:reader 第一种方法使

  • python 读取目录下csv文件并绘制曲线v111的方法

    实例如下: # -*- coding: utf-8 -*- """ Spyder Editor This temporary script file is located here: C:\Users\user\.spyder2\.temp.py """ """ Show how to modify the coordinate formatter to report the image "z"

  • Python Pandas批量读取csv文件到dataframe的方法

    PYTHON Pandas批量读取csv文件到DATAFRAME 首先使用glob.glob获得文件路径.然后定义一个列表,读取文件后再使用concat合并读取到的数据. #读取数据 import pandas as pd import numpy as np import glob,os path=r'e:\tj\month\fx1806' file=glob.glob(os.path.join(path, "zq*.xls")) print(file) dl= [] for f i

  • 使用python的pandas库读取csv文件保存至mysql数据库

    第一:pandas.read_csv读取本地csv文件为数据框形式 data=pd.read_csv('G:\data_operation\python_book\chapter5\\sales.csv') 第二:如果存在日期格式数据,利用pandas.to_datatime()改变类型 data.iloc[:,1]=pd.to_datetime(data.iloc[:,1]) 注意:=号,这样在原始的数据框中,改变了列的类型 第三:查看列类型 print(data.dtypes) 第四:方法一

  • Python实现读取及写入csv文件的方法示例

    本文实例讲述了Python实现读取及写入csv文件的方法.分享给大家供大家参考,具体如下: 新建csvData.csv文件,数据如下: 具体代码如下: # coding:utf-8 import csv # 读取csv文件方式1 csvFile = open("csvData.csv", "r") reader = csv.reader(csvFile) # 返回的是迭代类型 data = [] for item in reader: print(item) dat

  • python读取与写入csv格式文件的示例代码

    在数据分析中经常需要从csv格式的文件中存取数据以及将数据写书到csv文件中.将csv文件中的数据直接读取为 dict 类型和 DataFrame 是非常方便也很省事的一种做法,以下代码以鸢尾花数据为例. csv文件读取为dict 代码 # -*- coding: utf-8 -*- import csv with open('E:/iris.csv') as csvfile: reader = csv.DictReader(csvfile, fieldnames=None) # fieldna

  • Python如何读取、写入CSV数据

    问题 你想读写一个CSV格式的文件. 解决方案 对于大多数的CSV格式的数据读写问题,都可以使用 csv 库..例如,假设你在一个名叫stocks.csv文件中有一些股票市场数据,就像这样: 下面向你展示如何将这些数据读取为一个元组的序列: import csv with open('stocks.csv') as f: f_csv = csv.reader(f) headers = next(f_csv) for row in f_csv: # Process row ... 在上面的代码中,

  • Python基于csv模块实现读取与写入csv数据的方法

    本文实例讲述了Python基于csv模块实现读取与写入csv数据的方法.分享给大家供大家参考,具体如下: 通过csv模块可以轻松读取格式为csv的文件,而且csv模块是python内置的,不需要下载就可以直接用. 一.准备csv文件 文件名是 e:\t.csv,文件内容: org_id,org_name,state,emp_id 1,销售1,'1',123 2,销售2,'0',321 3,销售3,'1',231 1,,'1',1234 二.读取csv数据 代码非常简单: # -*- coding

  • Python读取mat文件,并转为csv文件的实例

    初学Python,遇到需要将mat文件转为csv文件,看了很多博客,最后找到了解决办法,代码如下: #方法1 from pandas import Series,DataFrame import pandas as pd import numpy as np import h5py datapath = 'E:/workspacelxr/contem/data.mat' file = h5py.File(datapath,'r') file.keys() def Print(name):prin

随机推荐