Python 多线程共享变量的实现示例

多线程-共享全局变量

#coding=utf-8
from threading import Thread
import time

g_num = 100

def work1():
 global g_num
 for i in range(3):
  g_num += 1

 print("----in work1, g_num is %d---"%g_num)

def work2():
 global g_num
 print("----in work2, g_num is %d---"%g_num)

print("---线程创建之前g_num is %d---"%g_num)

t1 = Thread(target=work1)
t1.start()

#延时一会,保证t1线程中的事情做完
time.sleep(1)

t2 = Thread(target=work2)
t2.start()

执行如下:

[root@server01 many_task]# python test5.py
---线程创建之前g_num is 100---
----in work1, g_num is 103---
----in work2, g_num is 103---
[root@server01 many_task]#

从上面两个线程执行的结果来看,线程t1将 g_num 加到 103,在线程t2也是打印g_num=103。所以对于两个线程,g_num这个全局变量是共享的。

列表当做实参传递到线程中

#coding=utf-8
from threading import Thread
import time

def work1(nums):
 nums.append(44)
 print("----in work1---",nums)

def work2(nums):
 #延时一会,保证t1线程中的事情做完
 time.sleep(1)
 print("----in work2---",nums)

g_nums = [11,22,33]

t1 = Thread(target=work1, args=(g_nums,))
t1.start()

t2 = Thread(target=work2, args=(g_nums,))
t2.start()

运行如下:

[root@server01 many_task]# python test6.py
('----in work1---', [11, 22, 33, 44])
('----in work2---', [11, 22, 33, 44])

总结:
在一个进程内的所有线程共享全局变量,很方便在多个线程间共享数据
缺点就是,线程是对全局变量随意遂改可能造成多线程之间对全局变量的混乱(即线程非安全)

多线程-共享全局变量问题

多线程开发可能遇到的问题

假设两个线程t1和t2都要对全局变量g_num(默认是0)进行加1运算,t1和t2都各对g_num加10次,g_num的最终的结果应该为20。

但是由于是多线程同时操作,有可能出现下面情况:

在g_num=0时,t1取得g_num=0。此时系统把t1调度为”sleeping”状态,把t2转换为”running”状态,t2也获得g_num=0
然后t2对得到的值进行加1并赋给g_num,使得g_num=1
然后系统又把t2调度为”sleeping”,把t1转为”running”。线程t1又把它之前得到的0加1后赋值给g_num。
这样导致虽然t1和t2都对g_num加1,但结果仍然是g_num=1

编写代码测试如下:

[root@server01 many_task]# vim test4.py 

#coding=utf-8
import threading
from time import sleep,ctime

# 初始化g_num
g_num = 0

def add_func1(num):
 global g_num
 for i in range(num):
  g_num += 1
  print("add_func1,第%d次,g_num等于%d" % (i,g_num))
  #sleep(0.5)

def add_func2(num):
 global g_num
 for i in range(num):
  g_num += 1
  print("add_func2,第%d次,g_num等于%d" % (i,g_num))
  #sleep(0.5)

def main():
 # 执行线程
 t1 = threading.Thread(target=add_func1,args=(100,))
 t2 = threading.Thread(target=add_func2,args=(100,))

 t1.start()
 t2.start()

 # 判断当线程存在,则等待1秒
 while len(threading.enumerate()) > 1:
  sleep(1)

 print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)

if __name__ == '__main__':
 main()

执行如下:

add_func2,第96次,g_num等于197
add_func2,第97次,g_num等于198
add_func2,第98次,g_num等于199
add_func2,第99次,g_num等于200
2个线程对同一个全局变量操作之后的最终结果是:200
[root@server01 many_task]#

两个线程虽然执行很快,但是g_num恰好就是100+100=200的结果,是正确的。不过,这个数量少,可能看不出问题来。

测试示例2

[root@server01 many_task]# vim test7.py 

def work1(num):
 global g_num
 for i in range(num):
  g_num += 1
 print("----in work1, g_num is %d---"%g_num)

def work2(num):
 global g_num
 for i in range(num):
  g_num += 1
 print("----in work2, g_num is %d---"%g_num)

print("---线程创建之前g_num is %d---"%g_num)

t1 = threading.Thread(target=work1, args=(10000000,))
t1.start()

t2 = threading.Thread(target=work2, args=(10000000,))
t2.start()

while len(threading.enumerate()) != 1:
 time.sleep(1)

print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)

运行如下:

[root@server01 many_task]# python test7.py
---线程创建之前g_num is 0---
----in work1, g_num is 11977799---
----in work2, g_num is 19108796---
2个线程对同一个全局变量操作之后的最终结果是:19108796
[root@server01 many_task]#

正确的结果应该是:20000000

结论

如果多个线程同时对同一个全局变量操作,会出现资源竞争问题,从而数据结果会不正确

到此这篇关于Python 多线程共享变量的实现示例的文章就介绍到这了,更多相关Python 多线程共享变量内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 浅谈python多线程和多线程变量共享问题介绍

    1.demo 第一个代码是多线程的简单使用,编写了线程如何执行函数和类. import threading import time class ClassName(threading.Thread): """创建类,通过多线程执行""" def run(self): for i in range(5): print(i) time.sleep(1) def sing(): for i in range(1,11): print("唱歌第

  • python多线程共享变量的使用和效率方法

    python多线程可以使任务得到并发执行,但是有时候在执行多次任务的时候,变量出现"意外". import threading,time n=0 start=time.time() def b1(num): global n n=n+num n=n-num def b2(num): for i in range(1000000): b1(num) t1=threading.Thread(target=b2,args=(5,)) t2=threading.Thread(target=b2

  • Python 多线程共享变量的实现示例

    多线程-共享全局变量 #coding=utf-8 from threading import Thread import time g_num = 100 def work1(): global g_num for i in range(3): g_num += 1 print("----in work1, g_num is %d---"%g_num) def work2(): global g_num print("----in work2, g_num is %d---&

  • Python多线程扫描端口代码示例

    本文代码实现Python多线程扫描端口,具体实现代码如下. #coding:utf-8 import socket import thread import time socket.setdefaulttimeout(3) def socket_port(ip,port): try: if port>=65535: print(u"端口扫描结束!") s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)#创建套接字 result=s

  • python多线程下信号处理程序示例

    本文实例为大家分享了python多线程下信号处理程序示例的具体代码,供大家参考,具体内容如下 下面是一个网上转载的实现思路,经过验证,发现是可行的,就记录下来. 思路 python多线程中要响应Ctrl+C的信号以杀死整个进程,需要: 1.把所有子线程设为Daemon: 2.使用isAlive()函数判断所有子线程是否完成,而不是在主线程中用join()函数等待完成: 3.写一个响应Ctrl+C信号的函数,修改全局变量,使得各子线程能够检测到,并正常退出. 源码 #!/usr/bin/env p

  • python多线程编程方式分析示例详解

    在Python多线程中如何创建一个线程对象如果你要创建一个线程对象,很简单,只要你的类继承threading.Thread,然后在__init__里首先调用threading.Thread的__init__方法即可 复制代码 代码如下: import threading  class mythread(threading.Thread):  def __init__(self, threadname):  threading.Thread.__init__(self, name = thread

  • Python多线程模块Threading用法示例小结

    本文实例讲述了Python多线程模块Threading用法.分享给大家供大家参考,具体如下: 步入正题前,先准备下基本知识,线程与进程的概念. 相信作为一个测试人员,如果从理论概念上来说其两者的概念或者区别,估计只会一脸蒙蔽,这里就举个例子来说明下其中的相关概念. 平安夜刚过,你是吃到了苹果还是香蕉呢...其实当你用手去接下对方苹果的时候,你的手臂就可以比喻成进程,你的五个手指就可以比喻成线程,所以很明显,线程可以说是进程的细化,没有进程就不会有线程. 这里还是说下必要的概念:    进程 是操

  • python多线程http下载实现示例

    测试平台 Ubuntu 13.04 X86_64 Python 2.7.4 花了将近两个小时, 问题主要刚开始没有想到传一个文件对象到线程里面去, 导致下载下来的文件和源文件MD5不一样,浪费不少时间. 有兴趣的同学可以拿去加上参数,改进下, 也可以加上断点续传. 复制代码 代码如下: # -*- coding: utf-8 -*-# Author: ToughGuy# Email: wj0630@gmail.com# 写这玩意儿是为了初步了解下python的多线程机制# 平时没写注释的习惯,

  • Python基于ThreadingTCPServer创建多线程代理的方法示例

    本文实例讲述了Python基于ThreadingTCPServer创建多线程代理的方法.分享给大家供大家参考,具体如下: #coding=utf8 from BaseHTTPServer import BaseHTTPRequestHandler from SocketServer import ThreadingTCPServer import gzip from StringIO import StringIO import logging logging.basicConfig(level

  • 详解python多线程、锁、event事件机制的简单使用

    线程和进程 1.线程共享创建它的进程的地址空间,进程有自己的地址空间 2.线程可以访问进程所有的数据,线程可以相互访问 3.线程之间的数据是独立的 4.子进程复制线程的数据 5.子进程启动后是独立的 ,父进程只能杀掉子进程,而不能进行数据交换 6.修改线程中的数据,都是会影响其他的线程,而对于进程的更改,不会影响子进程 threading.Thread Thread 是threading模块中最重要的类之一,可以使用它来创建线程.有两种方式来创建线程:一种是通过继承Thread类,重写它的run

  • Python多线程的使用详情

    目录 一,实用方法 二.补充:Python多线程共享变量资源竞争问题 一,实用方法 1.线程之间执行是无序的,cpu调度哪个线程就执行哪个线程: 2.主线程等待所有子线程结束后再结束,设置守护线程可以实现当主线程结束时子线程立马结束: 3.设置守护线程:1.threading.Thread(daemon=True),2.线程对象.setDaemon(True): 4.线程之间共享全局变量,存在资源竞争问题. ''' 线程之间执行是无序的,cpu调度哪个线程就执行哪个线程 主线程会等待所有子线程结

随机推荐