JVM 中的 returnAddress过程详解

目录
  • 数据类型
  • 栈帧

JVM是虚拟机,也是一种规范,他遵循着冯·诺依曼体系结构的设计原理。冯·诺依曼体系结构中,指出计算机处理的数据和指令都是二进制数,采用存储 程序方式不加区分的存储在同一个存储器里,并且顺序执行,指令由操作码和地址码组成,操作码决定了操作类型和所操作的数的数字类型,地址码则指出地址码和 操作数。从dos到window8,从unix到ubuntu和CentOS,还有MAC OS等等,不同的操作系统指令集以及数据结构都有着差异,而JVM通过在操作系统上建立虚拟机,自己定义出来的一套统一的数据结构和操作指令,把同一套语 言翻译给各大主流的操作系统,实现了跨平台运行,可以说JVM是java的核心,是java可以一次编译到处运行的本质所在。

参考文档:jvms12

数据类型

在 JVM 中,数据分为两大类:primitive types (原生类型)和 reference types(引用类型)。

引用类型,让 JVM 能更好的支持于面向对象语言的设计,引用类型的值用来指向内存中分配的类实例或者数组。JVM 规范中并没有详细规定引用类型的实现细节,比如引用应该通过何种方式去定位、访问堆中的对象,具体的对象访问方式取决于虚拟机的具体实现,比如 HotSpot 有其自己的实现方案。

目前主流的访问方式有使用句柄和直接指针两种:

其中使用直接指针访问的方式,类似于 C++ 中的虚表(虚表就是指向对象类型数据的指针)。这两种对象访问方式各有优劣,使用句柄访问的最大好处就是 reference 中存储的是稳定的句柄地址,在对象被移动(比如垃圾回收时,整理内存空间,会移动对象的存储位置)时只会改变句柄中示例数据的指针,而 reference 本身不需要修改。

使用直接指针访问的最大好处就是速度更快,节省了一次内存寻址的时间开销。

原生数据类型包括:numeric types, boolean type, returnAddress type。其中 returnAddress 数据只存在于字节码层面,与编程语言无关,也就是说,我们在 Java 语言中是不会直接与 returnAddress 类型的数据打交道的。

returnAddress 类型的值是指向字节码的指针,不管是物理机还是虚拟机,运行时内存中的数据总归可分为两类:代码,数据。对于冯诺依曼结构的计算机,指令数据和数值数据都存储在内存中,而哈弗结构的计算机,将程序指令与数据分开存储。

对于 JVM 来说,程序就是存储在方法区的字节码指令,而 returnAddress 类型的值就是指向特定指令内存地址的指针。

JVM支持多线程,每个线程有自己的程序计数器(pc register),而 pc 中的值就是当前指令所在的内存地址,即 returnAddress 类型的数据,当线程执行 native 方法时,pc 中的值为 undefined。

栈帧

栈帧(Stack Frame)是用于支持虚拟机进行方法调用和方法执行的数据结构,栈帧中存储了方法的局部变量表,操作数栈,动态连接,和方法返回地址等信息。在程序编译时,栈帧中需要多大的局部变量表,多深的操作数栈都已经完全确定了,并且写在方法表的 Code 属性中。

当一个方法开始执行后,只有两种方式可以退出,第一种方式是执行引擎遇到任意一个方法返回的字节码指令,这种方式称为正常完成出口;另外一种退出方式是,在方法执行过程中遇到异常,且该异常没有被被捕获,称为异常完成出口。

无论是哪种退出方式,在方法退出后,都需要返回到该方法被调用的位置(地址),让程序继续执行。一般来说,方法执行前,会保存调用者当前的 PC 计数器中的值,当方法正常退出时,将该 PC 计数器的值会作为返回地址,返回给调用者。在方法异常退出时,返回地址是通过异常处理器表来确定的。

方法退出的过程实际上就等于把当前栈帧出栈,一般过程为:

  • 恢复上层方法的局部变量表和操作数栈
  • 把返回值压入调用者栈帧的操作数栈中
  • 调整 PC 计数器的值,以指向方法调用指令后面的一条指令

到此这篇关于JVM 中的 returnAddress的文章就介绍到这了,更多相关JVM returnAddress内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 深入理解JVM自动内存管理

    目录 一.前言 1.1 计算机==>操作系统==>JVM 1.1.1 虚拟与实体(对上图的结构层次分析) 1.1.2 Java程序执行(对上图的箭头流程分析) 二.JVM内存空间与参数设置 2.1 运行时数据区 2.2 关于StackOverflowError和OutOfMemoryError 2.2.1 StackOverflowError 2.2.2 OutOfMemoryError 2.3 JVM堆内存和非堆内存 2.3.1 堆内存和非堆内存 2.3.2 JVM堆内部构型(新生代和老年代

  • 深入理解Java之jvm启动流程

    jvm是java的核心运行平台,自然是个非常复杂的系统.当然了,说jvm是个平台,实际上也是个泛称.准确的说,它是一个java虚拟机的统称,它并不指具体的某个虚拟机.所以,谈到java虚拟机时,往往我们通常说的都是一些规范性质的东西. 那么,如果想要研究jvm是如何工作的,就不能是泛泛而谈了.我们必须要具体到某个指定的虚拟机实现,以便说清其过程. 1. 说说openjdk 因为java实际上已经被oracle控制,而oracle本身是个商业公司,所以从某种程度上说,这里的java并不是完全开源的

  • 一篇文章带你深入理解JVM虚拟机读书笔记--锁优化

    目录 1. Java语言中的线程安全 1.1 不可变 1.2 绝对线程安全 1.3 相对线程安全 1.4 线程兼容 1.5 线程对立 2. 线程安全的实现方法 2.1 互斥同步 3. 锁优化 3.1 自旋锁与自适应自旋 3.2 锁消除 3.3 锁粗化 3.4 轻量级锁 3.5 偏向锁 总结 1. Java语言中的线程安全 按照线程安全的"安全程度"由强至弱来排序,可以将Java语言中各种操作共享的数据分为以下五类:不可变.绝对线程安全.相对线程安全.线程兼容和线程对立. 1.1 不可变

  • 深入理解JVM垃圾回收算法

    目录 一.垃圾标记阶段 1.1.引用计数法 (java没有采用) 1.2.可达性分析算法 二.对象的finalization机制 2.1.对象是否"死亡" 三.使用(MAT与JProfiler)工具分析GCRoots 3.1.获取dump文件 3.2.GC Roots分析 四.垃圾清除阶段 4.1.标记-清除算法 4.2.复制算法 4.3.标记-压缩(整理,Mark-Compact)算法 4.4.以上三种垃圾回收算法对比 4.5.分代收集算法 4.6.增量收集算法 4.7.分区算法G1

  • JVM 中的 returnAddress过程详解

    目录 数据类型 栈帧 JVM是虚拟机,也是一种规范,他遵循着冯·诺依曼体系结构的设计原理.冯·诺依曼体系结构中,指出计算机处理的数据和指令都是二进制数,采用存储 程序方式不加区分的存储在同一个存储器里,并且顺序执行,指令由操作码和地址码组成,操作码决定了操作类型和所操作的数的数字类型,地址码则指出地址码和 操作数.从dos到window8,从unix到ubuntu和CentOS,还有MAC OS等等,不同的操作系统指令集以及数据结构都有着差异,而JVM通过在操作系统上建立虚拟机,自己定义出来的一

  • JVM中的flag设置详解

    本文研究的主要是JVM中的flag设置详解的相关内容,具体介绍如下. 一.堆大小设置 -Xmx3550m:设置JVM最大可用内存为3550M. -Xms3550m:设置JVM初始可用内存为3550M. -Xmn2g:设置年轻代大小为2G. -Xss128k:设置每个线程的堆栈大小为128K -XX:NewSize=4:设置年轻代大小为4 -XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与老年代(除去持久代)的比值为4,则年轻代与年老代所占比值为1:4,年轻代占整个

  • Java jvm中Code Cache案例详解

    Code Cache JVM生成的native code存放的内存空间称之为Code Cache:JIT编译.JNI等都会编译代码到native code,其中JIT生成的native code占用了Code Cache的绝大部分空间 相关参数 Codecache Size Options -XX:InitialCodeCacheSize 用于设置初始CodeCache大小 -XX:ReservedCodeCacheSize 用于设置Reserved code cache的最大大小,通常默认是2

  • Java对象在JVM中的生命周期详解

    概念 在Java中,对象的生命周期包括以下几个阶段: 创建阶段(Created) 应用阶段(In Use) 不可见阶段(Invisible) 不可达阶段(Unreachable) 收集阶段(Collected) 终结阶段(Finalized) 对象空间重分配阶段(De-allocated) Java对象在JVM中的生命周期 当你通过new语句创建一个java对象时,JVM就会为这个对象分配一块内存空间,只要这个对象被引用变量引用了,那么这个对象就会一直驻留在内存中,否则,它就会结束生命周期,JV

  • Java在PDF中添加表格过程详解

    前言 本文将介绍通过Java编程在PDF文档中添加表格的方法.添加表格时,可设置表格边框.单元格对齐方式.单元格背景色.单元格合并.插入图片.设置行高.列宽.字体.字号等. 使用工具:Free Spire.PDF for Java (免费版) Jar文件获取及导入: 方法1:通过官网下载jar文件包.下载后,解压文件,将lib文件夹下的Spire.Pdf.jar文件导入Java程序. 方法2:通过maven仓库安装导入. Java 代码示例 Java代码 import com.spire.pdf

  • Django中在xadmin中集成DjangoUeditor过程详解

    环境 python版本:3.6 django:1.10.8 1.下载xadmin https://github.com/sshwsfc/xadmin 下载DjangoUeditor https://github.com/twz915/DjangoUeditor3 2.直接将xadmin和DjangoUeditor集成在pycharm里,在项目下新建一个文件夹extra_apps,将与xadmin.DjangoUeditor的同名文件复制在extra_apps下 3.在settings.py里注册

  • linux中了minerd之后的完全清理过程(详解)

    一不小心装了一个Redis服务,开了一个全网的默认端口,一开始以为这台服务器没有公网ip,结果发现之后悔之莫及啊 某天发现cpu load高的出奇,发现一个minerd进程 占了大量cpu,google了一下,发现自己中招了 下面就是清理过程 第一步 1.立即停止redis服务,修改端口权限,增加密码措施 2.按照网上的资料 删除 crontab 里的两个内容 sudo rm /var/spool/cron/root sudo rm /var/spool/cron/crontabs/root 3

  • Android4.X中SIM卡信息初始化过程详解

    本文实例讲述了Android4.X中SIM卡信息初始化过程详解.分享给大家供大家参考,具体如下: Phone 对象初始化的过程中,会加载SIM卡的部分数据信息,这些信息会保存在IccRecords 和 AdnRecordCache 中.SIM卡的数据信息的初始化过程主要分为如下几个步骤 1.RIL 和 UiccController 建立监听关系 ,SIM卡状态发生变化时,UiccController 第一个去处理. Phone 应用初始化 Phone 对象时会建立一个 RIL 和UiccCont

  • 基于python中pygame模块的Linux下安装过程(详解)

    一.使用pip安装Python包 大多数较新的Python版本都自带pip,因此首先可检查系统是否已经安装了pip.在Python3中,pip有时被称为pip3. 1.在Linux和OS X系统中检查是否安装了pip 打开一个终端窗口,并执行如下命令: Python2.7中: zhuzhu@zhuzhu-K53SJ:~$ pip --version pip 8.1.1 from /usr/lib/python2.7/dist-packages (python 2.7) Python3.X中: z

  • pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解

    公式 首先需要了解CrossEntropyLoss的计算过程,交叉熵的函数是这样的: 其中,其中yi表示真实的分类结果.这里只给出公式,关于CrossEntropyLoss的其他详细细节请参照其他博文. 测试代码(一维) import torch import torch.nn as nn import math criterion = nn.CrossEntropyLoss() output = torch.randn(1, 5, requires_grad=True) label = tor

随机推荐