使用Python函数进行模块化的实现

使用 Python 函数来最大程度地减少重复任务编码工作量。

你是否对函数、类、方法、库和模块等花哨的编程术语感到困惑?你是否在与变量作用域斗争?

无论你是自学成才的还是经过正式培训的程序员,代码的模块化都会令人困惑。但是类和库鼓励模块化代码,因为模块化代码意味着只需构建一个多用途代码块集合,就可以在许多项目中使用它们来减少编码工作量。

换句话说,如果你按照本文对 Python 函数的研究,你将找到更聪明的工作方法,这意味着更少的工作。

函数

函数是迈向模块化过程中重要的一步,因为它们是形式化的重复方法。如果在你的程序中,有一个任务需要反复执行,那么你可以将代码放入一个函数中,根据需要随时调用该函数。这样,你只需编写一次代码,就可以随意使用它。

以下一个简单函数的示例:

#!/usr/bin/env python3
import time
def Timer():
  print("Time is " + str(time.time() ))

创建一个名为 mymodularity 的目录,并将以上函数代码保存为该目录下的 timestamp.py。

除了这个函数,在 mymodularity 目录中创建一个名为 init.py 的文件,你可以在文件管理器或 bash shell 中执行此操作:

$ touch mymodularity/__init__.py

现在,你已经创建了属于你自己的 Python 库(Python 中称为“模块”),名为 mymodularity。它不是一个特别有用的模块,因为它所做的只是导入 time 模块并打印一个时间戳,但这只是一个开始。

要使用你的函数,像对待任何其他 Python 模块一样对待它。以下是一个小应用,它使用你的 mymodularity 软件包来测试 Python sleep() 函数的准确性。将此文件保存为 sleeptest.py,注意要在 mymodularity 文件夹 之外,因为如果你将它保存在 mymodularity 里面,那么它将成为你的包中的一个模块,你肯定不希望这样。

#!/usr/bin/env python3
import time
from mymodularity import timestamp
print("Testing Python sleep()...")
# modularity
timestamp.Timer()
time.sleep(3)
timestamp.Timer()

在这个简单的脚本中,你从 mymodularity 包中调用 timestamp 模块两次。从包中导入模块时,通常的语法是从包中导入你所需的模块,然后使用 模块名称 + 一个点 + 要调用的函数名(例如 timestamp.Timer())。

你调用了两次 Timer() 函数,所以如果你的 timestamp 模块比这个简单的例子复杂些,那么你将节省大量重复代码。

保存文件并运行:

$ python3 ./sleeptest.py
Testing Python sleep()...
Time is 1560711266.1526039
Time is 1560711269.1557732

根据测试,Python 中的 sleep 函数非常准确:在三秒钟等待之后,时间戳成功且正确地增加了 3,在微秒单位上差距很小。

Python 库的结构看起来可能令人困惑,但其实它并不是什么魔法。Python 被编程 为一个包含 Python 代码的目录,并附带一个 init.py 文件,那么这个目录就会被当作一个包,并且 Python 会首先在当前目录中查找可用模块。这就是为什么语句 from mymodularity import timestamp 有效的原因:Python 在当前目录查找名为 mymodularity 的目录,然后查找 timestamp.py 文件。

你在这个例子中所做的功能和以下这个非模块化的版本是一样的:

#!/usr/bin/env python3
import time
from mymodularity import timestamp
print("Testing Python sleep()...")
# no modularity
print("Time is " + str(time.time() ) )
time.sleep(3)
print("Time is " + str(time.time() ) )

对于这样一个简单的例子,其实没有必要以这种方式编写测试,但是对于编写自己的模块来说,最佳实践是你的代码是通用的,可以将它重用于其他项目。

通过在调用函数时传递信息,可以使代码更通用。例如,假设你想要使用模块来测试的不是 系统 的 sleep 函数,而是 用户自己实现 的 sleep 函数,更改 timestamp 代码,使它接受一个名为 msg 的传入变量,它将是一个字符串,控制每次调用 timestamp 时如何显示:

!/usr/bin/env python3

import time

更新代码

def Timer(msg):
print(str(msg) + str(time.time() ) )

现在函数比以前更抽象了。它仍会打印时间戳,但是它为用户打印的内容 msg 还是未定义的。这意味着你需要在调用函数时定义它。

Timer 函数接受的 msg 参数是随便命名的,你可以使用参数 m、message 或 text,或是任何对你来说有意义的名称。重要的是,当调用 timestamp.Timer 函数时,它接收一个文本作为其输入,将接收到的任何内容放入 msg 变量中,并使用该变量完成任务。

以下是一个测试测试用户正确感知时间流逝能力的新程序:

#!/usr/bin/env python3
from mymodularity import timestamp
print("Press the RETURN key. Count to 3, and press RETURN again.")
input()
timestamp.Timer("Started timer at ")
print("Count to 3...")
input()
timestamp.Timer("You slept until ")

将你的新程序保存为 response.py,运行它:

$ python3 ./response.py
Press the RETURN key. Count to 3, and press RETURN again.
Started timer at 1560714482.3772075
Count to 3...
You slept until 1560714484.1628013

函数和所需参数

新版本的 timestamp 模块现在 需要 一个 msg 参数。这很重要,因为你的第一个应用程序将无法运行,因为它没有将字符串传递给 timestamp.Timer 函数:

$ python3 ./sleeptest.py
Testing Python sleep()...
Traceback (most recent call last):
 File "./sleeptest.py", line 8, in <module>
  timestamp.Timer()
TypeError: Timer() missing 1 required positional argument: 'msg'

你能修复你的 sleeptest.py 应用程序,以便它能够与更新后的模块一起正确运行吗?

变量和函数

通过设计,函数限制了变量的范围。换句话说,如果在函数内创建一个变量,那么这个变量 只 在这个函数内起作用。如果你尝试在函数外部使用函数内部出现的变量,就会发生错误。

下面是对 response.py 应用程序的修改,尝试从 timestamp.Timer() 函数外部打印 msg 变量:

#!/usr/bin/env python3
from mymodularity import timestamp
print("Press the RETURN key. Count to 3, and press RETURN again.")
input()
timestamp.Timer("Started timer at ")
print("Count to 3...")
input()
timestamp.Timer("You slept for ")
print(msg)

试着运行它,查看错误:

$ python3 ./response.py
Press the RETURN key. Count to 3, and press RETURN again.
Started timer at 1560719527.7862902
Count to 3...
You slept for 1560719528.135406
Traceback (most recent call last):
 File "./response.py", line 15, in <module>
  print(msg)
NameError: name 'msg' is not defined

应用程序返回一个 NameError 消息,因为没有定义 msg。这看起来令人困惑,因为你编写的代码定义了 msg,但你对代码的了解比 Python 更深入。调用函数的代码,不管函数是出现在同一个文件中,还是打包为模块,都不知道函数内部发生了什么。一个函数独立地执行它的计算,并返回你想要它返回的内容。这其中所涉及的任何变量都只是 本地的:它们只存在于函数中,并且只存在于函数完成其目的所需时间内。

Return 语句

如果你的应用程序需要函数中特定包含的信息,那么使用 return 语句让函数在运行后返回有意义的数据。

时间就是金钱,所以修改 timestamp 函数,以使其用于一个虚构的收费系统:

#!/usr/bin/env python3
import time
def Timer(msg):
  print(str(msg) + str(time.time() ) )
  charge = .02
  return charge

现在,timestamp 模块每次调用都收费 2 美分,但最重要的是,它返回每次调用时所收取的金额。

以下一个如何使用 return 语句的演示:

#!/usr/bin/env python3
from mymodularity import timestamp
print("Press RETURN for the time (costs 2 cents).")
print("Press Q RETURN to quit.")
total = 0
while True:
  kbd = input()
  if kbd.lower() == "q":
    print("You owe $" + str(total) )
    exit()
  else:
    charge = timestamp.Timer("Time is ")
    total = total+charge

在这个示例代码中,变量 charge 为 timestamp.Timer() 函数的返回,它接收函数返回的任何内容。在本例中,函数返回一个数字,因此使用一个名为 total 的新变量来跟踪已经进行了多少更改。当应用程序收到要退出的信号时,它会打印总花费:

$ python3 ./charge.py
Press RETURN for the time (costs 2 cents).
Press Q RETURN to quit.
Time is 1560722430.345412
Time is 1560722430.933996
Time is 1560722434.6027434
Time is 1560722438.612629
Time is 1560722439.3649364
q
You owe $0.1

内联函数

函数不必在单独的文件中创建。如果你只是针对一个任务编写一个简短的脚本,那么在同一个文件中编写函数可能更有意义。唯一的区别是你不必导入自己的模块,但函数的工作方式是一样的。以下是时间测试应用程序的最新迭代:

#!/usr/bin/env python3
import time
total = 0
def Timer(msg):
  print(str(msg) + str(time.time() ) )
  charge = .02
  return charge
print("Press RETURN for the time (costs 2 cents).")
print("Press Q RETURN to quit.")
while True:
  kbd = input()
  if kbd.lower() == "q":
    print("You owe $" + str(total) )
    exit()
  else:
    charge = Timer("Time is ")
    total = total+charge

它没有外部依赖(Python 发行版中包含 time 模块),产生与模块化版本相同的结果。它的优点是一切都位于一个文件中,缺点是你不能在其他脚本中使用 Timer() 函数,除非你手动复制和粘贴它。

全局变量

在函数外部创建的变量没有限制作用域,因此它被视为 全局 变量。

全局变量的一个例子是在 charge.py 中用于跟踪当前花费的 total 变量。total 是在函数之外创建的,因此它绑定到应用程序而不是特定函数。

应用程序中的函数可以访问全局变量,但要将变量传入导入的模块,你必须像发送 msg 变量一样将变量传入模块。

全局变量很方便,因为它们似乎随时随地都可用,但也很难跟踪它们,很难知道哪些变量不再需要了但是仍然在系统内存中停留(尽管 Python 有非常好的垃圾收集机制)。

但是,全局变量很重要,因为不是所有的变量都可以是函数或类的本地变量。现在你知道了如何向函数传入变量并获得返回,事情就变得容易了。

总结

你已经学到了很多关于函数的知识,所以开始将它们放入你的脚本中 —— 如果它不是作为单独的模块,那么作为代码块,你不必在一个脚本中编写多次。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python使用cPickle模块序列化实例

    本文实例讲述了python使用cPickle模块序列化的方法,分享给大家供大家参考. 具体方法如下: import cPickle data1 = ['abc',12,23] #几个测试数据 data2 = {1:'aaa',"b":'dad'} data3 = (1,2,4) output_file = open("a.txt",'w') cPickle.dump(data1,output_file) cPickle.dump(data2,output_file)

  • Python中的数据对象持久化存储模块pickle的使用示例

    Python中可以使用 pickle 模块将对象转化为文件保存在磁盘上,在需要的时候再读取并还原.具体用法如下: pickle是Python库中常用的序列化工具,可以将内存对象以文本或二进制格式导出为字符串,或者写入文档.后续可以从字符或文档中还原为内存对象.新版本的Python中用c重新实现了一遍,叫cPickle,性能更高. 下面的代码演示了pickle库的常用接口用法,非常简单: import cPickle as pickle # dumps and loads # 将内存对象dump为

  • Python 序列化 pickle/cPickle模块使用介绍

    Python序列化的概念很简单.内存里面有一个数据结构,你希望将它保存下来,重用,或者发送给其他人.你会怎么做?这取决于你想要怎么保存,怎么重用,发送给谁.很多游戏允许你在退出的时候保存进度,然后你再次启动的时候回到上次退出的地方.(实际上,很多非游戏程序也会这么干)在这种情况下,一个捕获了当前进度的数据结构需要在你退出的时候保存到硬盘上,接着在你重新启动的时候从硬盘上加载进来. Python标准库提供pickle和cPickle模块.cPickle是用C编码的,在运行效率上比pickle要高,

  • Python使用pickle模块实现序列化功能示例

    本文实例讲述了Python使用pickle模块实现序列化功能.分享给大家供大家参考,具体如下: Python内置的pickle模块能够将Python对象序列成字节流,也可以把字节流反序列成对象. import pickle class Student: def __init__(self, name, age): self.name = name self.age = age def say(self): print("I am", self.name) >>> t

  • Python下使用Psyco模块优化运行速度

    今天介绍下Psyco模块,Psyco模块可以使你的Python程序运行的像C语言一样快. 都说Python语言易用易学,但性能上跟一些编译语言(如C语言)比较要差不少,这里可以用C语言和Python语言各编写斐波纳契数列计算程序,并计算运行时间: C语言程序 复制代码 代码如下: int fib(int n){    if (n < 2)      return n;    else      return fib(n - 1) + fib(n - 2); }   int main() {   

  • 使用Python函数进行模块化的实现

    使用 Python 函数来最大程度地减少重复任务编码工作量. 你是否对函数.类.方法.库和模块等花哨的编程术语感到困惑?你是否在与变量作用域斗争? 无论你是自学成才的还是经过正式培训的程序员,代码的模块化都会令人困惑.但是类和库鼓励模块化代码,因为模块化代码意味着只需构建一个多用途代码块集合,就可以在许多项目中使用它们来减少编码工作量. 换句话说,如果你按照本文对 Python 函数的研究,你将找到更聪明的工作方法,这意味着更少的工作. 函数 函数是迈向模块化过程中重要的一步,因为它们是形式化的

  • Python 函数简单易理解版

    目录 Python 函数 一.什么是模块化程序设计? 1. 编写流程--自顶向下 2.函数在模块化设计的作用 二.实战 1.功能简介 2.通讯录功能简介 3.主程序入口 4.主程序包含以下功能 5.用什么数据结构来描述一个联系人 6.用什么数据结构来描述一个通讯录 三.函数实现 1.主函数代码实现 2.添加联系人代码实现 3.列出联系人代码实现 4.查出联系人代码实现 5.删除联系人代码实现 6.运行效果 Python 函数 一.什么是模块化程序设计? 在进行程序设计时将一个大程序按照功能划分为

  • Python学习之模块化程序设计示例详解

    目录 关于模块化程序设计 水果仓库功能简介 主功能实现与程序入口 实现添加功能 实现列出所有信息功能 实现查询信息功能 实现删除信息功能 完整程序如下 关于模块化程序设计 什么是模块化程序设计? 程序设计的模块化指的是在进行程序设计时,把一个大的程序功能划分为若干个小的程序模块.每一个小程序模块实现一个确定的功能,并且在这些小程序模块实现的功能之间建立必要的联系,通过各个小模块之间的互相协作完成整个大功能实现的方法. 模块化设计程序的方法? 一般在针对实现比较复杂程序的情况下,采用的是自上而下的

  • 深入讲解Python函数中参数的使用及默认参数的陷阱

    C++里函数可以设置缺省参数,Java不可以,只能通过重载的方式来实现,python里也可以设置默认参数,最大的好处就是降低函数难度,函数的定义只有一个,并且python是动态语言,在同一名称空间里不能有想多名称的函数,如果出现了,那么后出现的会覆盖前面的函数. def power(x, n=2): s = 1 while n > 0: n = n - 1 s = s * x return s 看看结果: >>> power(5) 25 >>> power(5,3

  • Python函数返回值实例分析

    本文实例讲述了Python的函数返回值用法.分享给大家供大家参考.具体分析如下: 最近学一些Python的基本用法,看到定义函数,发现似乎只能返回一个返回值,想想matlab里返回多个返回值多方便啊,网上查了查,看到有返回多个值的方法.   python 函数返回值有两种形式: 1 返回一个值. 2 返回多个值.   现看看返回一个值的吧. def firstvalue(a,b): c = a + b return c print firstvalue(1,2) #结果:3 再看看返回多个值的:

  • 详解Python函数作用域的LEGB顺序

    本文为大家介绍了Python函数作用域的查找顺序,供大家参考,具体内容如下 1.什么是LEGB? L:local 函数内部作用域 E:enclosing 函数内部与内嵌函数之间 G:global 全局作用域 B:build-in 内置作用域 2.LEGB是作什么用的? 为什么非要介绍这个呢?或者说它们的作用是什么? 原因是因为我们的在学习Python函数的时候,经常会遇到很多定义域的问题,全部变量,内部变量,内部嵌入的函数,等等,Python是如何查找的呢?以及Python又是按照什么顺序来查找

  • python函数装饰器用法实例详解

    本文实例讲述了python函数装饰器用法.分享给大家供大家参考.具体如下: 装饰器经常被用于有切面需求的场景,较为经典的有插入日志.性能测试.事务处理等.装饰器是解决这类问题的绝佳设计, 有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用.概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能. #! coding=utf-8 import time def timeit(func): def wrapper(a): start = time.clock() func

  • 详细介绍Python函数中的默认参数

    import datetime as dt def log_time(message, time=None): if time is None: time=dt.datetime.now() print("{0}: {1}".format(time.isoformat(), message)) 最近我在一段Python代码中发现了一个因为错误的使用默认参数而产生的非常恶心的bug.如果您已经知道关于默认参数的全部内容了,只是想嘲笑一下我这可笑的错误,请直接跳到本文末尾.哎,这段代码是我

  • python 函数传参之传值还是传引用的分析

    首先还是应该科普下函数参数传递机制,传值和传引用是什么意思? 函数参数传递机制问题在本质上是调用函数(过程)和被调用函数(过程)在调用发生时进行通信的方法问题.基本的参数传递机制有两种:值传递和引用传递. 值传递(passl-by-value)过程中,被调函数的形式参数作为被调函数的局部变量处理,即在堆栈中开辟了内存空间以存放由主调函数放进来的实参的值,从而成为了实参的一个副本.值传递的特点是被调函数对形式参数的任何操作都是作为局部变量进行,不会影响主调函数的实参变量的值. 引用传递(pass-

  • 老生常谈python函数参数的区别(必看篇)

    在运用python的过程中,发现当函数参数为list的时候,在函数内部调用list.append()会改变形参,与C/C++的不太一样,查阅相关资料,在这里记录一下. python中id可以获取对象的内存地址 >>> num1 = 10 >>> num2 = num1 >>> num3 = 10 >>> id(num1) >>> id(num2) >>> id(num3) 可以看到num1.num2

随机推荐