Python手绘可视化工具cutecharts使用实例

这篇文章主要介绍了Python手绘可视化工具cutecharts使用实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

今天,给大家介绍一个很酷的 Python 手绘风格可视化神包:cutecharts。

和 Matplotlib 、pyecharts 等常见的图表不同,使用这个包可以生成下面这种看起来像手绘的各种图表,在一些场景下使用效果可能会更好。

GitHub 地址:https://github.com/chenjiandongx/cutecharts

一行命令先安装好该库:

pip install cutecharts

柱状图

from cutecharts.charts import Bar
from cutecharts.components import Page
from cutecharts.faker import Faker
def bar_base() -> Bar:
  chart = Bar("Bar-基本示例")
  chart.set_options(labels=Faker.choose(), x_label="I'm xlabel", y_label="I'm ylabel")
  chart.add_series("series-A", Faker.values())
  return chart
bar_base().render()

折线图

from cutecharts.charts import Line
from cutecharts.components import Page
from cutecharts.faker import Faker
def line_base() -> Line:
  chart = Line("Line-基本示例")
  chart.set_options(labels=Faker.choose(), x_label="I'm xlabel", y_label="I'm ylabel")
  chart.add_series("series-A", Faker.values())
  chart.add_series("series-B", Faker.values())
  return chart
line_base().render()

饼图

from cutecharts.charts import Pie
from cutecharts.components import Page
from cutecharts.faker import Faker
def pie_base() -> Pie:
  chart = Pie("Pie-基本示例")
  chart.set_options(labels=Faker.choose())
  chart.add_series(Faker.values())
  return chart
pie_base().render()

雷达图

from cutecharts.charts import Radar
from cutecharts.components import Page
from cutecharts.faker import Faker
def radar_base() -> Radar:
  chart = Radar("Radar-基本示例")
  chart.set_options(labels=Faker.choose())
  chart.add_series("series-A", Faker.values())
  chart.add_series("series-B", Faker.values())
  return chart
radar_base().render()

散点图

from cutecharts.charts import Scatter
from cutecharts.components import Page
from cutecharts.faker import Faker
​
​
def scatter_base() -> Scatter:
  chart = Scatter("Scatter-基本示例")
  chart.set_options(x_label="I'm xlabel", y_label="I'm ylabel")
  chart.add_series(
    "series-A", [(z[0], z[1]) for z in zip(Faker.values(), Faker.values())]
  )
  chart.add_series(
    "series-B", [(z[0], z[1]) for z in zip(Faker.values(), Faker.values())]
  )
  return chart
​
​
scatter_base().render()

觉得不错就赶紧去尝尝鲜!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 分享8个非常流行的 Python 可视化工具包

    喜欢用 Python 做项目的小伙伴不免会遇到这种情况:做图表时,用哪种好看又实用的可视化工具包呢?之前文章里出现过漂亮的图表时,也总有读者在后台留言问该图表时用什么工具做的.下面,作者介绍了八种在 Python 中实现的可视化工具包,其中有些包还能用在其它语言中.快来试试你喜欢哪个? 用 Python 创建图形的方法有很多,但是哪种方法是最好的呢?当我们做可视化之前,要先明确一些关于图像目标的问题:你是想初步了解数据的分布情况?想展示时给人们留下深刻印象?也许你想给某人展示一个内在的形象,一个

  • Python 数据可视化pyecharts的使用详解

    什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生成 Echarts 图表的类库.实际上就是 Echarts 与 Python 的对接. 使用 pyecharts可以生成独立的网页,也可以在 flask , Django中集成使用. pyecharts包含的图表 Bar(柱状图/条形图) Bar3D(3D 柱状图) Boxplot(箱形图) Effe

  • Python数据可视化实现正态分布(高斯分布)

    正态分布(Normal distribution)又成为高斯分布(Gaussian distribution) 若随机变量X服从一个数学期望为.标准方差为的高斯分布,记为: 则其概率密度函数为: 正态分布的期望值决定了其位置,其标准差决定了分布的幅度.因其曲线呈钟形,因此人们又经常称之为钟形曲线.我们通常所说的标准正态分布是的正态分布: 概率密度函数 代码实现: # Python实现正态分布 # 绘制正态分布概率密度函数 u = 0 # 均值μ u01 = -2 sig = math.sqrt(

  • 利用python实现周期财务统计可视化

    正文之前 上午给爸爸打了个电话庆祝他50岁生日,在此之前搞了个大扫除,看了会知乎,到实验室已经十一点多了.约喜欢的妹子吃饭失败,以至于工作积极性收到了打击,所以就写个程序来统计下开学十一天的财务消费情况,更清楚的认识自己. 正文 废话不多说,先放代码: import matplotlib.pyplot as plt import matplotlib from pylab import mpl plt.rcParams['font.sans-serif']=['SimHei'] def getA

  • python地震数据可视化详解

    本文实例为大家分享了python地震数据可视化的具体代码,供大家参考,具体内容如下 参考源码:seisplot 准备工作: 在windows10下安装python3.7,下载参考源码到本地. 1. demo绘图测试 demo绘图指令 cmd> python seisplot.py --demo 问题1)缺少依赖包 File "D:/Desktop/python可视化/seisplot/seisplot.py", line 16, in <module> import

  • Python数据可视化 pyecharts实现各种统计图表过程详解

    1.pyecharts介绍 Echarts是一款由百度公司开发的开源数据可视化JS库,pyecharts是一款使用python调用echarts生成数据可视化的类库,可实现柱状图,折线图,饼状图,地图等统计图表. 2.柱状图 适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况. 优点: 利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感. 缺点: 只适用中小规模的数据集. 柱状图最基本用法 from pyechart

  • Python Tkinter模块 GUI 可视化实例

    我就废话不多说了,直接上代码: coding:utf-8 #自带的Tkinter模块 from Tkinter import * from ScrolledText import ScrolledText #gui框 root = Tk() root.title('视频多线程') #窗口坐标和大小 +代表调整坐标 x代表调整大小 root.geometry('500x500+200+100') #滚动条 text = ScrolledText(root,font=('微软雅黑',10)) #实现

  • Python手绘可视化工具cutecharts使用实例

    这篇文章主要介绍了Python手绘可视化工具cutecharts使用实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 今天,给大家介绍一个很酷的 Python 手绘风格可视化神包:cutecharts. 和 Matplotlib .pyecharts 等常见的图表不同,使用这个包可以生成下面这种看起来像手绘的各种图表,在一些场景下使用效果可能会更好. GitHub 地址:https://github.com/chenjiandongx/cut

  • Python "手绘风格"数据可视化方法实例汇总

    目录 前言 Python-matplotlib 手绘风格图表绘制 Python-cutecharts 手绘风格图表绘制 Python-py-roughviz 手绘风格图表绘制 总结 前言 大家好,今天给大家带来绘制“手绘风格”可视化作品的小技巧,主要涉及Python编码绘制.主要内容如下: Python-matplotlib 手绘风格图表绘制 Python-cutecharts 手绘风格图表绘制 Python-py-roughviz 手绘风格图表绘制 Python-matplotlib 手绘风格

  • Python趣味编程实现手绘风视频示例

    在正文开始之前,先看一下最初效果,下面是单张图片转换前后对比 图一 图二 图三 为了增加趣味性,后面将这段代码应用到一个视频中,加上一个背景音乐,新鲜的 "手绘风视频" 出炉 Python 手绘风视频制作! "手绘风"实现步骤 讲解之前,需要了解手绘图像的三个主要特点: 图片需为灰度图,是单通道的: 边缘部分线条较重涂抹为黑色,相同或相近像素值转换后趋于白色: 在光源效果的加持下,灰度变化可模拟人类视觉的远近效果 读取图片,转化为数组 因为后面要用到像素计算,为了方

  • Python可视化工具Plotly的应用教程

    目录 一.简介 二.各图运用 1.柱状图 2.散点图 3.冒泡散点图 4.旭日图 5.地图图形 三.实战案例 一.简介 发展由来: 随着信息技术的发展和硬件设备成本的降低,当今的互联网存在海量的数据,要想快速从这些数据中获取更多有效的信息,数据可视化是重要的一环.对于Python语言来说,比较传统的数据可视化模块是Matplotlib,但它存在不够美观.静态性.不易分享等缺点,限制了Python在数据可视化方面的发展. 为了解决这个问题,新型的动态可视化开源模块Plotly应运而生.由于Plot

  • 可视化工具PyVista多线程显示多窗口的实例代码

    在使用PyVista进行多线程同时显示多个窗口的时候,发现开启多个线程显示窗口,窗口会卡死,于是便有了这篇文章. 发现问题 在可视化工具--利用PyVista进行mesh的色彩映射这篇博客中,我们实现了使用四种方法对mesh进行色彩映射,为了对这四种方法映射结果有一个直观的认识,我第一个想法就是开启四个线程,分别调用这四个函数. 代码如下: 定义四个色彩映射函数: import pyvista as pv import matplotlib.pyplot as plt from matplotl

  • Python性能分析工具Profile使用实例

    这篇文章主要介绍了Python性能分析工具Profile使用实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 profile,cProfile 与 hotshot 等.其中 Profiler 是 python 自带的一组程序,能够描述程序运行时候的性能,并提供各种统计帮助用户定位程序

  • Python数据可视化:幂律分布实例详解

    1.公式推导 对幂律分布公式: 对公式两边同时取以10为底的对数: 所以对于幂律公式,对X,Y取对数后,在坐标轴上为线性方程. 2.可视化 从图形上来说,幂律分布及其拟合效果: 对X轴与Y轴取以10为底的对数.效果上就是X轴上1与10,与10与100的距离是一样的. 对XY取双对数后,坐标轴上点可以很好用直线拟合.所以,判定数据是否符合幂律分布,只需要对XY取双对数,判断能否用一个直线很好拟合就行.常见的直线拟合效果评估标准有拟合误差平方和.R平方. 3.代码实现 #!/usr/bin/env

  • python seaborn heatmap可视化相关性矩阵实例

    方法 import pandas as pd import numpy as np import seaborn as sns df = pd.DataFrame(np.random.randn(50).reshape(10,5)) corr = df.corr() sns.heatmap(corr, cmap='Blues', annot=True) 将矩阵型简化为对角矩阵型: mask = np.zeros_like(corr) mask[np.tril_indices_from(mask)

  • Python可视化工具如何实现动态图表

    本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理 以下文章来源于菜J学Python ,作者J哥 前言 这次呢,我想讲讲地图可视化的内容,以前我也写过用Python的内置库绘制地图,但总感觉不够美观.如何才能在短时间内制作漂亮的可视化地图呢,我觉得Python+可视化工具是不错的选择. 以下动态可视化地图就是J哥亲手绘制,展现了一段时间内广州市企事业单位在网上商城采购商品的分布及随时间的变化. 接下来,将手把手教你如何绘制这个动态

  • python中altair可视化库实例用法

    作为六大python可视化库,基本上学会都是可以通吃任何领域的存在,本章要给大家介绍的Altair就是其中之一的可视化库,能够将数据转化为非常直观的图片,让我们更加清晰的认知数据之前直观的联系,俨然已经成为可视化库中的新星,好啦,下面就让我们详细了解下这个荣获众多粉丝的可视化库的使用技巧吧. 安装Altair: 依赖JupyterLab $ pip install -U altair vega_datasets jupyterlab 导入Altair: import altair as alt

随机推荐