Python 使用Opencv实现目标检测与识别的示例代码

在上章节讲述到图像特征检测与匹配 ,本章节是讲述目标检测与识别。后者是在前者的基础上进一步完善。
在本章中,我们使用HOG算法,HOG和SIFT、SURF同属一种类型的描述符。功能代码如下:

import cv2
def is_inside(o, i):
 ox, oy, ow, oh = o
 ix, iy, iw, ih = i
 # 如果符合条件,返回True,否则返回False
 return ox > ix and oy > iy and ox + ow < ix + iw and oy + oh < iy + ih

# 根据坐标画出人物所在的位置
def draw_person(img, person):
 x, y, w, h = person
 cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 2)

# 定义HOG特征+SVM分类器
img = cv2.imread("people.jpg")
hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
found, w = hog.detectMultiScale(img, winStride=(8, 8), scale=1.05)

# 判断坐标位置是否有重叠
found_filtered = []
for ri, r in enumerate(found):
 for qi, q in enumerate(found):
 a = is_inside(r, q)
 if ri != qi and a:
  break
 else:
 found_filtered.append(r)
# 勾画筛选后的坐标位置
for person in found_filtered:
 draw_person(img, person)
# 显示图像
cv2.imshow("people detection", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如图所示:

这个例子是使用HOG特征进行SVM算法训练,这部分已开始涉及到机器学习的方面,通过SVM算法训练数据集,然后根据某图像与数据集进行匹配。

到此这篇关于Python 使用Opencv实现目标检测与识别的示例代码的文章就介绍到这了,更多相关Opencv 目标检测与识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python+opencv+caffe+摄像头做目标检测的实例代码

    首先之前已经成功的使用Python做图像的目标检测,这回因为项目最终是需要用摄像头的, 所以实现摄像头获取图像,并且用Python调用CAFFE接口来实现目标识别 首先是摄像头请选择支持Linux万能驱动兼容V4L2的摄像头, 因为之前用学ARM的时候使用的Smart210,我已经确认我的摄像头是支持的, 我把摄像头插上之後自然就在 /dev 目录下看到多了一个video0的文件, 这个就是摄像头的设备文件了,所以我就没有额外处理驱动的部分 一.检测环境 再来在开始前因为之前按着国嵌的指导手册安

  • python opencv根据颜色进行目标检测的方法示例

    颜色目标检测就是根据物体的颜色快速进行目标定位.使用cv2.inRange函数设定合适的阈值,即可以选出合适的目标. 建立项目colordetect.py,代码如下: #! /usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import cv2 def colorDetect(): image = cv2.imread('./1.png') # 使用RGB颜色空间检测红 蓝 黄 灰,设置合适的阈值 boundaries

  • Python Opencv任意形状目标检测并绘制框图

    opencv 进行任意形状目标识别,供大家参考,具体内容如下 工作中有一次需要在简单的图上进行目标识别,目标的形状不固定,并且存在一定程度上的噪声影响,但是噪声影响不确定.这是一个简单的事情,因为图像并不复杂,现在将代码公布如下: import cv2 def otsu_seg(img): ret_th, bin_img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) return ret_th, bin_img d

  • Python Opencv实现单目标检测的示例代码

    一 简介 目标检测即为在图像中找到自己感兴趣的部分,将其分割出来进行下一步操作,可避免背景的干扰.以下介绍几种基于opencv的单目标检测算法,算法总体思想先尽量将目标区域的像素值全置为1,背景区域全置为0,然后通过其它方法找到目标的外接矩形并分割,在此选择一张前景和背景相差较大的图片作为示例. 环境:python3.7 opencv4.4.0 二 背景前景分离 1 灰度+二值+形态学 轮廓特征和联通组件 根据图像前景和背景的差异进行二值化,例如有明显颜色差异的转换到HSV色彩空间进行分割. 1

  • OpenCV+python实现实时目标检测功能

    环境安装 安装Anaconda,官网链接Anaconda 使用conda创建py3.6的虚拟环境,并激活使用 conda create -n py3.6 python=3.6 //创建 conda activate py3.6 //激活 3.安装依赖numpy和imutils //用镜像安装 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy pip install -i https://pypi.tuna.tsinghua

  • Python 使用Opencv实现目标检测与识别的示例代码

    在上章节讲述到图像特征检测与匹配 ,本章节是讲述目标检测与识别.后者是在前者的基础上进一步完善. 在本章中,我们使用HOG算法,HOG和SIFT.SURF同属一种类型的描述符.功能代码如下: import cv2 def is_inside(o, i): ox, oy, ow, oh = o ix, iy, iw, ih = i # 如果符合条件,返回True,否则返回False return ox > ix and oy > iy and ox + ow < ix + iw and o

  • Python调用百度OCR实现图片文字识别的示例代码

    百度AI提供了一天50000次的免费文字识别额度,可以愉快的免费使用!下面直接上方法: 首先在百度AI创建一个应用,按照下图创建即可,创建后会获得如下: 创建后会获得如下信息: APP_ID = '******' API_KEY = '************' SECRET_KEY = '**************' 下面就是百度API包的安装,在终端cmd输入如下语句直接pip方式安装,注意是 baidu-api 哦! pip install --user baidu-aip 接下来上py

  • Python基于OpenCV库Adaboost实现人脸识别功能详解

    本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能.分享给大家供大家参考,具体如下: 以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数...相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了. 需要用到的库是opencv(open source computer vision),下载安装方式如下: 使用pip install num

  • 通过 Python 和 OpenCV 实现目标数量监控

    今天我们将利用python+OpenCV实现对视频中物体数量的监控,达到视频监控的效果,比如洗煤厂的监控水龙头的水柱颜色,当水柱为黑色的超过了一半,那么将说明过滤网发生了故障.当然不仅如此,我们看的是图像视频处理的技巧,你也可以将项目迁移到其他地方等,这仅仅是一个例子而已.我们知道计算机视觉中关于图像识别有四大类任务: . 分类-Classification:解决"是什么?"的问题,即给定一张图片或一段视频判断里面包含什么类别的目标. 定位-Location:解决"在哪里?&

  • Python+Opencv实现数字识别的示例代码

    一.什么是数字识别?   所谓的数字识别,就是使用算法自动识别出图片中的数字.具体的效果如下图所示: 上图展示了算法的处理效果,算法能够自动的识别到LCD屏幕上面的数字,这在现实场景中具有很大的实际应用价值.下面我们将对它的实现细节进行详细解析. 二.如何实现数字识别?   对于数字识别这个任务而言,它并不是一个新的研究方向,很久之前就有很多的学者们在关注这个问题,并提出了一些可行的解决方案,本小节我们将对这些方案进行简单的总结. 方案一:使用现成的OCR技术. OCR,即文字识别,它是一个比较

  • Python基于OpenCV实现人脸检测并保存

    本文实例为大家分享了Python基于OpenCV实现人脸检测,并保存的具体代码,供大家参考,具体内容如下 安装opencv 如果安装了pip的话,Opencv的在windows的安装可以直接通过cmd命令pip install opencv-python(只需要主要模块),也可以输入命令pip install opencv-contrib-python(如果需要main模块和contrib模块) 详情可以点击此处 导入opencv import cv2 所有包都包含haarcascade文件.这

  • python利用opencv实现颜色检测

    本文实例为大家分享了python利用opencv实现颜色检测的具体代码,供大家参考,具体内容如下 需要实现倒车辅助标记检测的功能,倒车辅助标记颜色已经确定了,所以不需要使用深度学习的方法,那样成本太高了,直接可以使用颜色检测的方法. 1.首先需要确定待检测目标的HSV值 import cv2 img = cv2.imread('l3.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hsv = cv2.cvtColor(img, cv2.COL

  • Python使用OPENCV的目标跟踪算法实现自动视频标注效果

    先上效果 1.首先,要使用opencv的目标跟踪算法,必须要有opencv环境 使用:opencv==4.4.0 和 opencv-contrib-python==4.4.0.46,lxml   这三个环境包. 也可以使用以下方法进行下载 : pip install opencv-python==4.4.0 pip install opencv-contrib-python==4.4.0.4 pip install lxml 2.使用方法: (1):英文状态下的 "s" 是进行标注 (

  • Python Flask搭建yolov3目标检测系统详解流程

    [人工智能项目]Python Flask搭建yolov3目标检测系统 后端代码 from flask import Flask, request, jsonify from PIL import Image import numpy as np import base64 import io import os from backend.tf_inference import load_model, inference os.environ['CUDA_VISIBLE_DEVICES'] = '

  • 基于深度学习和OpenCV实现目标检测

    目录 使用深度学习和 OpenCV 进行目标检测 MobileNets:高效(深度)神经网络 使用 OpenCV 进行基于深度学习的对象检测 使用 OpenCV 检测视频 使用深度学习和 OpenCV 进行目标检测 基于深度学习的对象检测时,您可能会遇到三种主要的对象检测方法: Faster R-CNNs (Ren et al., 2015) You Only Look Once (YOLO) (Redmon et al., 2015) Single Shot Detectors (SSD)(L

随机推荐