C# IQueryable<T>揭开表达式树的神秘面纱

什么是树?

什么是树?这个问题好像有点白痴。树不就是树嘛。

我们从最下面的主干开始往上看,主枝-分支-分支....可以说是无限分支下去。我们倒过来看就是这样:

平时我们用得最多的树结构数据就是XML了,节点下面可以无限添加子节点。我们想想平时还用过什么树结构数据,比如:菜单无限分级、评论区的楼层。

这和我们今天讲的有毛关系啊。... 我们今天主要就是来分析表达式树的。、

lambda表达式和表达式树的区别:

Lambda表达式:

Func<Student, bool> func = t => t.Name == "农码一生";

表达式树:

Expression<Func<Student, bool>> expression = t => t.Name == "农码一生"; 

咋一看,没啥区别啊。表达式只是用Expression包了一下而已。那你错了,这只是Microsoft给我们展示的障眼法,我们看编译后的C#代码:

第一个lambda表达式编译成了匿名函数,第二个表达式树编译成一了一堆我们不认识的东西,远比我们原来写的lambda复杂得多。

结论:

我们平时使用的表达式树,是编写的lambda表达式然后编译成的表达式树,也就是说平时一般情况使用的表达式树都是编译器帮我们完成的。(当然,我们可以可以手动的主动的去创表达式树。只是太麻烦,不是必要情况没有谁愿意去干这个苦活呢)

我们来看看表达式树到底有什么神奇的地方:

有没有看出点感觉来?Body里面有Right、Left,Right里面又有Right、Left,它们的类型都是继承自Expression。这种节点下面有节点,可以无限附加下去的数据结构我们称为树结构数据。也就是我们的表达式树。

补:上面的Student实体类:

public class Student
{
    public string Name { get; set; }

    public int Age { get; set; }

    public string Address { get; set; }

    public string Sex { get; set; }
}

解析表达式树

上面我们看到了所谓的表达式树,其他也没有想象的那么复杂嘛。不就是一个树结构数据嘛。如果我们要实现自己的orm,免不了要解析表达式树。一般说到解析树结构数据都会用到递归算法。下面我们开始解析表达式树。

先定义解析方法:

//表达式解析
public static class AnalysisExpression
{
    public static void VisitExpression(Expression expression)
    {
        switch (expression.NodeType)
        {
            case ExpressionType.Call://执行方法
                MethodCallExpression method = expression as MethodCallExpression;
                Console.WriteLine("方法名:" + method.Method.Name);
                for (int i = 0; i < method.Arguments.Count; i++)
                    VisitExpression(method.Arguments[i]);
                break;
            case ExpressionType.Lambda://lambda表达式
                LambdaExpression lambda = expression as LambdaExpression;
                VisitExpression(lambda.Body);
                break;
            case ExpressionType.Equal://相等比较
            case ExpressionType.AndAlso://and条件运算
                BinaryExpression binary = expression as BinaryExpression;
                Console.WriteLine("运算符:" + expression.NodeType.ToString());
                VisitExpression(binary.Left);
                VisitExpression(binary.Right);
                break;
            case ExpressionType.Constant://常量值
                ConstantExpression constant = expression as ConstantExpression;
                Console.WriteLine("常量值:" + constant.Value.ToString());
                break;
            case ExpressionType.MemberAccess:
                MemberExpression Member = expression as MemberExpression;
                Console.WriteLine("字段名称:{0},类型:{1}", Member.Member.Name, Member.Type.ToString());
                break;
            default:
                Console.Write("UnKnow");
                break;
        }
    }

}

调用解析方法:

Expression<Func<Student, bool>> expression = t => t.Name == "农码一生" && t.Sex == "男";
AnalysisExpression.VisitExpression(expression);

一层一层的往子节点递归,直到遍历完所有的节点。最后打印效果如下:

基本上我们想要的元素和值都取到了,接着怎么组装就看你自己的心情了。是拼成sql,还是生成url,请随意!

实现自己的IQueryable<T>、IQueryProvider

仅仅解析了表达式树就可以捣鼓自己的orm了?不行,起码也要基于IQueryable<T>接口来编码吧。

接着我们自定义个类MyQueryable<T>继承接口IQueryable<T>:

public class MyQueryable<T> : IQueryable<T>
 {
     public IEnumerator<T> GetEnumerator()
     {
         throw new NotImplementedException();
     }
     IEnumerator IEnumerable.GetEnumerator()
     {
         throw new NotImplementedException();
     }
     public Type ElementType
     {
         get { throw new NotImplementedException(); }
     }
     public Expression Expression
     {
         get { throw new NotImplementedException(); }
     }
     public IQueryProvider Provider
     {
         get { throw new NotImplementedException(); }
     }
 }

我们看到其中有个接口属性IQueryProvider,这个接口的作用大着呢,主要作用是在执行查询操作符的时候重新创建IQueryable<T>并且最后遍历的时候执行sql远程取值。我们还看见了Expression 属性。

现在我们明白了IQueryable<T>和Expression(表达式树)的关系了吧:

IQueryable<T>最主要的作用就是用来存储Expression(表达式树)

下面我们也自定义现实了IQueryProvider接口的类MyQueryProvider:

public class MyQueryProvider : IQueryProvider
{
    public IQueryable<TElement> CreateQuery<TElement>(Expression expression)
    {
        throw new NotImplementedException();
    }
    public IQueryable CreateQuery(Expression expression)
    {
        throw new NotImplementedException();
    }
    public TResult Execute<TResult>(Expression expression)
    {
        throw new NotImplementedException();
    }
    public object Execute(Expression expression)
    {
        throw new NotImplementedException();
    }
}

上面全是自动生成的伪代码,下面我们来填充具体的实现:

public class MyQueryProvider : IQueryProvider
    {
        public IQueryable<TElement> CreateQuery<TElement>(Expression expression)
        {
            return new MyQueryable<TElement>(expression);
        }

        public IQueryable CreateQuery(Expression expression)
        {
            throw new NotImplementedException();
        }

        public TResult Execute<TResult>(Expression expression)
        {
            return default(TResult);
        }

        public object Execute(Expression expression)
        {
            return new List<object>();
        }
    }
    public class MyQueryable<T> : IQueryable<T>
    {
        public MyQueryable()
        {
            _provider = new MyQueryProvider();
            _expression = Expression.Constant(this);
        }

        public MyQueryable(Expression expression)
        {
            _provider = new MyQueryProvider();
            _expression = expression;
        }
        public Type ElementType
        {
            get { return typeof(T); }
        }

        private Expression _expression;
        public Expression Expression
        {
            get { return _expression; }
        }

        private IQueryProvider _provider;
        public IQueryProvider Provider
        {
            get { return _provider; }
        }

        public IEnumerator GetEnumerator()
        {
            return (Provider.Execute(Expression) as IEnumerable).GetEnumerator();
        }

        IEnumerator<T> IEnumerable<T>.GetEnumerator()
        {
            var result = _provider.Execute<List<T>>(_expression);
            if (result == null)
                yield break;
            foreach (var item in result)
            {
                yield return item;
            }
        }
    }

执行代码:

var aa = new MyQueryable<Student>();
 var bb = aa.Where(t => t.Name == "农码一生");
 var cc = bb.Where(t => t.Sex == "男");
 var dd = cc.AsEnumerable();
 var ee = cc.ToList(); 

结论:

  • 每次在执行Where查询操作符的时候IQueryProvider会为我们创建一个新的IQueryable<T>
  • 调用AsEnumerable()方法的时候并不会去实际取值(只是得到一个IEnumerable)[注意:在EF里面查询不要先取IEnumerable后滤筛,因为AsEnumerable()会生成查询全表的sql]
  • 执行ToList()方法时才去真正调用迭代器GetEnumerator()取值
  • 真正取值的时候,会去执行IQueryProvider中的Execute方法。(就是在调用这个方法的时候解析表达式数,然后执行取得结果)

我们看到真正应该办实事的Execute 我们却让他返回默认值了。

现在估计有人不爽了,你到是具体实现下Execute。好吧!(其实通过上面说的解析表达式树,你可以自己在这里做想做的任何事了。)

首先为了简单起见,我们用一个集合做为数据源:

//构造Student数组
public static List<Student> StudentArrary = new List<Student>()
{
        new Student(){Name="农码一生", Age=26, Sex="男", Address="长沙"},
        new Student(){Name="小明", Age=23, Sex="男", Address="岳阳"},
        new Student(){Name="嗨-妹子", Age=25, Sex="女", Address="四川"}
};

然后,重新写一个VisitExpression2方法:(和之前的区别: 现在目的是取表达式树中的表达式,而不是重新组装成sql或别的)

public static void VisitExpression2(Expression expression, ref List<LambdaExpression> lambdaOut)
{
    if (lambdaOut == null)
        lambdaOut = new List<LambdaExpression>();
    switch (expression.NodeType)
    {
        case ExpressionType.Call://执行方法
            MethodCallExpression method = expression as MethodCallExpression;
            Console.WriteLine("方法名:" + method.Method.Name);
            for (int i = 0; i < method.Arguments.Count; i++)
                VisitExpression2(method.Arguments[i], ref  lambdaOut);
            break;
        case ExpressionType.Lambda://lambda表达式
            LambdaExpression lambda = expression as LambdaExpression;
            lambdaOut.Add(lambda);
            VisitExpression2(lambda.Body, ref  lambdaOut);
            break;
        case ExpressionType.Equal://相等比较
        case ExpressionType.AndAlso://and条件运算
            BinaryExpression binary = expression as BinaryExpression;
            Console.WriteLine("运算符:" + expression.NodeType.ToString());
            VisitExpression2(binary.Left, ref  lambdaOut);
            VisitExpression2(binary.Right, ref  lambdaOut);
            break;
        case ExpressionType.Constant://常量值
            ConstantExpression constant = expression as ConstantExpression;
            Console.WriteLine("常量值:" + constant.Value.ToString());
            break;
        case ExpressionType.MemberAccess:
            MemberExpression Member = expression as MemberExpression;
            Console.WriteLine("字段名称:{0},类型:{1}", Member.Member.Name, Member.Type.ToString());
            break;
        case ExpressionType.Quote:
            UnaryExpression Unary = expression as UnaryExpression;
            VisitExpression2(Unary.Operand, ref  lambdaOut);
            break;
        default:
            Console.Write("UnKnow");
            break;
    }
}

然后重新实现方法Execute:

public TResult Execute<TResult>(Expression expression)
{
    List<LambdaExpression> lambda = null;
    AnalysisExpression.VisitExpression2(expression, ref lambda);//解析取得表达式数中的表达式
    IEnumerable<Student> enumerable = null;
    for (int i = 0; i < lambda.Count; i++)
    {
        //把LambdaExpression转成Expression<Func<Student, bool>>类型
        //通过方法Compile()转成委托方法
        Func<Student, bool> func = (lambda[i] as Expression<Func<Student, bool>>).Compile();
        if (enumerable == null)
            enumerable = Program.StudentArrary.Where(func);//取得IEnumerable
        else
            enumerable = enumerable.Where(func);
    }
    dynamic obj = enumerable.ToList();//(注意:这个方法的整个处理过程,你可以换成解析sql执行数据库查询,或者生成url然后请求获取数据。)
    return (TResult)obj;
}

执行过程:

个人对IQueryable延迟加载的理解:

  • 前段部分的查询操作符只是把逻辑分解存入表达式树,并没有远程执行sql。
  • foreache执行的是IEnumerable<T>,然而IEnumerable<T>同样具有延迟加载的特性。每次迭代的时候才真正的取数据。且在使用导航属性的时候会再次查询数据库。(下次说延迟加载不要忘记了IEnumerable的功劳哦!)

小知识:

表达式树转成Lambda表达式:

Expression<Func<Student, bool>> expression = t => t.Name == "农码一生";
Func<Student, bool> func = expression.Compile();

总结

表达式树的分析就告一段落了,其中还有很多细节或重要的没有分析到。下次有新的心得再来总结。

感觉表达式树就是先把表达式打散存在树结构里(一般打散的过程是编译器完成),然后可以根据不同的数据源或接口重新组装成自己想要的任何形式,这也让我们实现自己的orm成为了可能。

今天主要是对表达式树的解析、和实现自己的IQueryable<T>、IQueryProvider做了一个记录和总结,其中不定有错误的结论或说法,轻点拍!

以上就是C# IQueryable<T>揭开表达式树的神秘面纱的详细内容,更多关于C# IQueryable<T>的资料请关注我们其它相关文章!

(0)

相关推荐

  • C#之Expression表达式树实例

    本文实例讲述了C#之Expression表达式树,分享给大家供大家参考.具体实现方法如下: 表达式树表示树状数据结构的代码,树状结构中的每个节点都是一个表达式,例如一个方法调用或类似 x < y 的二元运算 1.利用 Lambda 表达式创建表达式树 复制代码 代码如下: Expression<Func<int, int, int, int>> expr = (x, y, z) => (x + y) / z; 2.编译表达式树,该方法将表达式树表示的代码编译成一个可执行

  • C# 快速高效率复制对象(表达式树)

    1.需求 在代码中经常会遇到需要把对象复制一遍,或者把属性名相同的值复制一遍. 比如: public class Student { public int Id { get; set; } public string Name { get; set; } public int Age { get; set; } } public class StudentSecond { public int Id { get; set; } public string Name { get; set; } p

  • C# IQueryable及IEnumerable区别解析

    在使用EF查询数据的时候,我们常用的查询数据方式有linq to sql,linq to object, 查询返回的结果有两种类型:IQueryable.IEnumerable,两者内部的处理机制是完全不同的. 清楚认识,这里也是一个数据查询的优化点. 在System.linq命名空间,有两个静态类:Queryable和Enumerable. 在System.linq.Queryable中,参数接收的是一个表达式类型,返回IQueryable接口 public static IQueryable

  • C# Lambda表达式及Lambda表达式树的创建过程

    每次写博客,第一句话都是这样的:程序员很苦逼,除了会写程序,还得会写博客!当然,希望将来的一天,某位老板看到此博客,给你的程序员职工加点薪资吧!因为程序员的世界除了苦逼就是沉默.我眼中的程序员大多都不爱说话,默默承受着编程的巨大压力,除了技术上的交流外,他们不愿意也不擅长和别人交流,更不乐意任何人走进他们的内心! 题外话说多了,咱进入正题: 上一节中,我们讲到:在 2.0 之前的 C# 版本中,声明委托的唯一方法是使用命名方法.C# 2.0 引入了匿名方法,而在 C# 3.0 及更高版本中,La

  • C# Entity Framework中的IQueryable和IQueryProvider详解

    前言 相信大家对Entity Framework一定不陌生,我相信其中Linq To Sql是其最大的亮点之一,但是我们一直使用到现在却不曾明白内部是如何实现的,今天我们就简单的介绍IQueryable和IQueryProvider. IQueryable接口 我们先聊聊这个接口,因为我们在使用EF中经常看到linq to sql语句的返回类型是IQueryable,我们可以看下这个接口的结构: 复制代码 代码如下: public interface IQueryable : IEnumerab

  • C#表达式树的基本用法讲解

    表达式树使用一种类似树的结构来表示代码,它的每个节点都是一个表达式,比如方法调用和x<y这样的二元运算等.我们可以对表达式树的内容进行编辑和运算,这样能够动态修改可执行代码,以及动态创建查询等.我们可以使用匿名lambda表达式或者C# API来创建表达式树. 这一系列文章,主要是对C#表达式树的一种总结,基本知识参考MSDN的内容 这部分内容可以直接到MSDN上查看,后面的几篇文章主要分享一下,在工作中碰到的应用到表达式树的部分,谨做为记录和分享. 生成表达式树 通过lambda表达式创建表达

  • C# 表达式树Expression Trees的知识梳理

    目录 简介 Lambda 表达式创建表达式树 API 创建表达式树 解析表达式树 表达式树的永久性 编译表达式树 执行表达式树 修改表达式树 调试 简介 表达式树以树形数据结构表示代码,其中每一个节点都是一种表达式,比如方法调用和 x < y 这样的二元运算等. 你可以对表达式树中的代码进行编辑和运算.这样能够动态修改可执行代码.在不同数据库中执行 LINQ 查询以及创建动态查询. 表达式树还能用于动态语言运行时 (DLR) 以提供动态语言和 .NET Framework 之间的互操作性. 一.

  • c#反射表达式树模糊搜索示例

    复制代码 代码如下: public static Expression<Func<T, bool>> GetSearchExpression<T>(string SearchString)        {            Expression<Func<T, bool>> filter = null; if (string.IsNullOrEmpty(SearchString)) return null;            var l

  • 浅谈c#表达式树Expression简单类型比较demo

    实例如下: using System; using System.Linq.Expressions; class DynamicPredicate { public static Expression<Func<T, T, bool>> Generate<T>(string op) { ParameterExpression x = Expression.Parameter(typeof(T), "x"); ParameterExpression y

  • C#用表达式树构建动态查询的方法

    前文介绍了C#中表达式树的基本知识,在实际中,表达式树有很多用法,这里举几个例子,说明如何使用表达式树构建动态查询,从而扩展LINQ的查询方法. 在LINQ中,只要数据源实现了IQuerable<T>接口,表达式树就可以用来表示结构化查询.比如,LINQ提供了用来查询关系数据源的IQueryable<T>接口的实现,C#编译器在执行这类数据源查询时,会在运行时生成表达式树,然后,查询会遍历表达式树的数据结构,然后将其转换成针对特定数据源的合适的查询语言. 下面的几个例子演示了如何使

随机推荐