python验证码识别的示例代码

写爬虫有一个绕不过去的问题就是验证码,现在验证码分类大概有4种:

  • 图像类
  • 滑动类
  • 点击类
  • 语音类

今天先来看看图像类,这类验证码大多是数字、字母的组合,国内也有使用汉字的。在这个基础上增加噪点、干扰线、变形、重叠、不同字体颜色等方法来增加识别难度。

相应的,验证码识别大体可以分为下面几个步骤:

  • 灰度处理
  • 增加对比度(可选)
  • 二值化
  • 降噪
  • 倾斜校正分割字符
  • 建立训练库
  • 识别

由于是实验性质的,文中用到的验证码均为程序生成而不是批量下载真实的网站验证码,这样做的好处就是可以有大量的知道明确结果的数据集。

当需要真实环境下需要获取数据时,可以使用结合各个大码平台来建立数据集进行训练。

生成验证码这里我使用Claptcha这个库,当然Captcha这个库也是个不错的选择。

为了生成最简单的纯数字、无干扰的验证码,首先需要将claptcha.py的285行_drawLine做一些修改,我直接让这个函数返回None,然后开始生成验证码:

from claptcha import Claptcha
c = Claptcha("8069","/usr/share/fonts/truetype/freefont/FreeMono.ttf")
t,_ = c.write('1.png')

这里需要注意ubuntu的字体路径,也可以在网上下载其他字体使用。生成验证码如下:

可以看出,验证码有形变。对于这类最简单的验证码,可以直接使用谷歌开源的tesserocr来识别。

首先安装:

apt-get install tesseract-ocr libtesseract-dev libleptonica-dev
pip install tesserocr

然后开始识别:

from PIL import Image
import tesserocr
p1 = Image.open('1.png')
tesserocr.image_to_text(p1)
'8069\n\n'

可以看出,对于这种简单的验证码,基本什么都不做识别率就已经很高了。有兴趣的小伙伴可以用更多的数据来测试,这里我就不展开了。

接下来,在验证码背景添加噪点来看看:

c = Claptcha("8069","/usr/share/fonts/truetype/freefont/FreeMono.ttf",noise=0.4)
t,_ = c.write('2.png')

生成验证码如下:

识别:

p2 = Image.open('2.png')
tesserocr.image_to_text(p2)
'8069\n\n'

效果还可以。接下来生成一个字母数字组合的:

c2 = Claptcha("A4oO0zZ2","/usr/share/fonts/truetype/freefont/FreeMono.ttf")
t,_ = c2.write('3.png')

生成验证码如下:

第3个为小写字母o,第4个为大写字母O,第5个为数字0,第6个为小写字母z,第7个为大写字母Z,最后一个是数字2。人眼已经跪了有木有!但现在一般验证码对大小写是不做严格区分的,看自动识别什么样吧:

p3 = Image.open('3.png')
tesserocr.image_to_text(p3)
'AMOOZW\n\n'

人眼都跪的计算机当然也废了。但是,对于一些干扰小、形变不严重的,使用tesserocr还是十分简单方便的。然后将修改的claptcha.py的285行_drawLine还原,看添加干扰线的情况。

p4 = Image.open('4.png')
tesserocr.image_to_text(p4)

加了条干扰线就完全识别不出来了,那么有没有什么办法去除干扰线呢?

虽然图片看上去是黑白的,但还需要进行灰度处理,否则使用load()函数得到的是某个像素点的RGB元组而不是单一值了。处理如下:

def binarizing(img,threshold):
 """传入image对象进行灰度、二值处理"""
 img = img.convert("L") # 转灰度
 pixdata = img.load()
 w, h = img.size
 # 遍历所有像素,大于阈值的为黑色
 for y in range(h):
  for x in range(w):
   if pixdata[x, y] < threshold:
    pixdata[x, y] = 0
   else:
    pixdata[x, y] = 255
 return img

处理后的图片如下:

可以看出处理后图片锐化了很多,接下来尝试去除干扰线,常见的4邻域、8邻域算法。所谓的X邻域算法,可以参考手机九宫格输入法,按键5为要判断的像素点,4邻域就是判断上下左右,8邻域就是判断周围8个像素点。如果这4或8个点中255的个数大于某个阈值则判断这个点为噪音,阈值可以根据实际情况修改。

def depoint(img):
 """传入二值化后的图片进行降噪"""
 pixdata = img.load()
 w,h = img.size
 for y in range(1,h-1):
  for x in range(1,w-1):
   count = 0
   if pixdata[x,y-1] > 245:#上
    count = count + 1
   if pixdata[x,y+1] > 245:#下
    count = count + 1
   if pixdata[x-1,y] > 245:#左
    count = count + 1
   if pixdata[x+1,y] > 245:#右
    count = count + 1
   if pixdata[x-1,y-1] > 245:#左上
    count = count + 1
   if pixdata[x-1,y+1] > 245:#左下
    count = count + 1
   if pixdata[x+1,y-1] > 245:#右上
    count = count + 1
   if pixdata[x+1,y+1] > 245:#右下
    count = count + 1
   if count > 4:
    pixdata[x,y] = 255
 return img

处理后的图片如下:

好像……根本没卵用啊?!确实是这样的,因为示例中的图片干扰线的宽度和数字是一样的。对于干扰线和数据像素不同的,比如Captcha生成的验证码:

从左到右依次是原图、二值化、去除干扰线的情况,总体降噪的效果还是比较明显的。另外降噪可以多次执行,比如我对上面的降噪后结果再进行依次降噪,可以得到下面的效果:

再进行识别得到了结果:

p7 = Image.open('7.png')
tesserocr.image_to_text(p7)
'8069 ,,\n\n'

另外,从图片来看,实际数据颜色明显和噪点干扰线不同,根据这一点可以直接把噪点全部去除,这里就不展开说了。

第一篇文章,先记录如何将图片进行灰度处理、二值化、降噪,并结合tesserocr来识别简单的验证码,剩下的部分在下一篇文章中和大家一起分享。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python网站验证码识别

    0x00 识别涉及技术 验证码识别涉及很多方面的内容.入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足. 验证码图像处理 验证码图像识别技术主要是操作图片内的像素点,通过对图片的像素点进行一系列的操作,最后输出验证码图像内的每个字符的文本矩阵. 读取图片 图片降噪 图片切割 图像文本输出 验证字符识别 验证码内的字符识别主要以机器学习的分类算法来完成,目前我所利用的字符识别的算法为KNN(K邻近算法)和SVM (支持向量机算法),后面我 会对这两个算法的适用场景进行详细描述.

  • python下调用pytesseract识别某网站验证码的实现方法

    一.pytesseract介绍 1.pytesseract说明 pytesseract最新版本0.1.6,网址:https://pypi.python.org/pypi/pytesseract Python-tesseract is a wrapper for google's Tesseract-OCR ( http://code.google.com/p/tesseract-ocr/ ). It is also useful as a stand-alone invocation scrip

  • Python+Selenium+PIL+Tesseract自动识别验证码进行一键登录

    本文介绍了Python+Selenium+PIL+Tesseract自动识别验证码进行一键登录,分享给大家,具体如下: Python 2.7 IDE Pycharm 5.0.3 Firefox浏览器:47.0.1 Selenium PIL Pytesser Tesseract 扯淡 ​ 我相信每个脚本都有自己的故事,我这个脚本来源于自己GRD教务系统,每次进行登录时,即使我输入全部正确,第一次登录一定是登不上去的!我不知道设计人员什么想法?难道是为了反爬机制?你以为一次登不上,我tm就不爬了?我

  • 谈谈Python进行验证码识别的一些想法

    用python加"验证码"为关键词在baidu里搜一下,可以找到很多关于验证码识别的文章.我大体看了一下,主要方法有几类:一类是通过对图片进行处理,然后利用字库特征匹配的方法,一类是图片处理后建立字符对应字典,还有一类是直接利用ocr模块进行识别.不管是用什么方法,都需要首先对图片进行处理,于是试着对下面的验证码进行分析. 一.图片处理 这个验证码中主要的影响因素是中间的曲线,首先考虑去掉图片中的曲线.考虑了两种算法: 第一种是首先取到曲线头的位置,即x=0时,黑点的位置.然后向后移动

  • python验证码识别的实例详解

    其实关于验证码识别涉及很多方面的内容,入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足,对这感兴趣的朋友们下面跟着小编一起来学习学习吧. 依赖 sudo apt-get install python-imaging sudo apt-get install tesseract-ocr pip install pytesseract 利用google ocr来识别验证码 from PIL import Image import pytesseract image = Image

  • python入门教程之识别验证码

    前言 验证码?我也能破解? 关于验证码的介绍就不多说了,各种各样的验证码在人们生活中时不时就会冒出来,身为学生日常接触最多的就是教务处系统的验证码了,比如如下的验证码: 识别办法 模拟登陆有着复杂的步骤,在这里咱们不管其他操作,只负责根据输入的一张验证码图片返回一个答案字符串. 我们知道验证码为了制作干扰,会把图片弄成五颜六色的样子,而我们首先就是要去除这些干扰,这一步就需要不断试验了,增强图片色彩,加大对比度等等都可以产生帮助. 在经过各种对图片的操作之后,终于找到了比较完美的去除干扰方案.可

  • Python验证码识别的方法

    本文实例讲述了Python验证码识别的方法.分享给大家供大家参考.具体实现方法如下: #encoding=utf-8 import Image,ImageEnhance,ImageFilter import sys image_name = "./22.jpeg" #去处 干扰点 im = Image.open(image_name) im = im.filter(ImageFilter.MedianFilter()) enhancer = ImageEnhance.Contrast(

  • 详解Python验证码识别

    以前写过一个刷校内网的人气的工具,Java的(以后再也不行Java程序了),里面用到了验证码识别,那段代码不是我自己写的:-) 校内的验证是完全单色没有任何干挠的验证码,识别起来比较容易,不过从那段代码中可以看到基本的验证码识别方式.这几天在写一个程序的时候需要识别验证码,因为程序是Python写的自然打算用Python进行验证码的识别. 以前没用Python处理过图像,不太了解PIL(Python Image Library)的用法,这几天看了看PIL,发现它太强大了,简直和ImageMagi

  • Python验证码识别处理实例

    一.准备工作与代码实例 (1)安装PIL:下载后是一个exe,直接双击安装,它会自动安装到C:\Python27\Lib\site-packages中去, (2)pytesser:下载解压后直接放C:\Python27\Lib\site-packages(根据你安装的Python路径而不同),同时,新建一个pytheeer.pth,内容就写pytesser,注意这里的内容一定要和pytesser这个文件夹同名,意思就是pytesser文件夹,pytesser.pth,及内容都要一样! (3)Te

  • python验证码识别的示例代码

    写爬虫有一个绕不过去的问题就是验证码,现在验证码分类大概有4种: 图像类 滑动类 点击类 语音类 今天先来看看图像类,这类验证码大多是数字.字母的组合,国内也有使用汉字的.在这个基础上增加噪点.干扰线.变形.重叠.不同字体颜色等方法来增加识别难度. 相应的,验证码识别大体可以分为下面几个步骤: 灰度处理 增加对比度(可选) 二值化 降噪 倾斜校正分割字符 建立训练库 识别 由于是实验性质的,文中用到的验证码均为程序生成而不是批量下载真实的网站验证码,这样做的好处就是可以有大量的知道明确结果的数据

  • python验证码识别实例代码

    本文研究的主要是Python验证码识别的相关代码,具体如下. Talk is cheap, show you the Code! import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from PIL import Image #打开图像 im=np.array(Image.open('yzm.png')) #得到图像3个维度 h,w,san=im.shape X=[(h-x,y

  • Python调用百度OCR实现图片文字识别的示例代码

    百度AI提供了一天50000次的免费文字识别额度,可以愉快的免费使用!下面直接上方法: 首先在百度AI创建一个应用,按照下图创建即可,创建后会获得如下: 创建后会获得如下信息: APP_ID = '******' API_KEY = '************' SECRET_KEY = '**************' 下面就是百度API包的安装,在终端cmd输入如下语句直接pip方式安装,注意是 baidu-api 哦! pip install --user baidu-aip 接下来上py

  • Python 使用Opencv实现目标检测与识别的示例代码

    在上章节讲述到图像特征检测与匹配 ,本章节是讲述目标检测与识别.后者是在前者的基础上进一步完善. 在本章中,我们使用HOG算法,HOG和SIFT.SURF同属一种类型的描述符.功能代码如下: import cv2 def is_inside(o, i): ox, oy, ow, oh = o ix, iy, iw, ih = i # 如果符合条件,返回True,否则返回False return ox > ix and oy > iy and ox + ow < ix + iw and o

  • Python三十行代码实现简单人脸识别的示例代码

    一.库介绍 opencv,face_recognition,numpy,以及dlib 注意: 安装opencv速度可能过慢,需要更换国内镜像源,参考:https://www.jb51.net/article/208359.htm 附带Python3.7,64位版本 dlib whl下载路径:dlib-19_jb51.rar 二.库安装 pip install opencv-python pip install face_recognition pip install numpy dlib库需进入

  • Python+Opencv实现数字识别的示例代码

    一.什么是数字识别?   所谓的数字识别,就是使用算法自动识别出图片中的数字.具体的效果如下图所示: 上图展示了算法的处理效果,算法能够自动的识别到LCD屏幕上面的数字,这在现实场景中具有很大的实际应用价值.下面我们将对它的实现细节进行详细解析. 二.如何实现数字识别?   对于数字识别这个任务而言,它并不是一个新的研究方向,很久之前就有很多的学者们在关注这个问题,并提出了一些可行的解决方案,本小节我们将对这些方案进行简单的总结. 方案一:使用现成的OCR技术. OCR,即文字识别,它是一个比较

  • 使用卷积神经网络(CNN)做人脸识别的示例代码

    上回书说到了对人脸的检测,这回就开始正式进入人脸识别的阶段. 关于人脸识别,目前有很多经典的算法,当我大学时代,我的老师给我推荐的第一个算法是特征脸法,原理是先将图像灰度化,然后将图像每行首尾相接拉成一个列向量,接下来为了降低运算量要用PCA降维, 最后进分类器分类,可以使用KNN.SVM.神经网络等等,甚至可以用最简单的欧氏距离来度量每个列向量之间的相似度.OpenCV中也提供了相应的EigenFaceRecognizer库来实现该算法,除此之外还有FisherFaceRecognizer.L

  • python实现图像识别的示例代码

    一.安装库 首先我们需要安装PIL和pytesseract库. PIL:(Python Imaging Library)是Python平台上的图像处理标准库,功能非常强大. pytesseract:图像识别库. 我这里使用的是python3.6,PIL不支持python3所以使用如下命令 pip install pytesseract pip install pillow 如果是python2,则在命令行执行如下命令: pip install pytesseract pip install PI

  • 爬虫Python验证码识别入门

    目录 爬虫Python验证码识别 1.批量下载验证码图片 2.识别代码看看效果 3.折腾降噪.去干扰 爬虫Python验证码识别 前言: 二值化.普通降噪.8邻域降噪 tesseract.tesserocr.PIL 参考文献--代码地址:https://github.com/liguobao/python-verify-code-ocr 1.批量下载验证码图片 import shutil import requests from loguru import logger for i in ran

随机推荐