Pytorch中实现只导入部分模型参数的方式

我们在做迁移学习,或者在分割,检测等任务想使用预训练好的模型,同时又有自己修改之后的结构,使得模型文件保存的参数,有一部分是不需要的(don't expected)。我们搭建的网络对保存文件来说,有一部分参数也是没有的(missed)。如果依旧使用torch.load(model.state_dict())的办法,就会出现 xxx expected,xxx missed类似的错误。那么在这种情况下,该如何导入模型呢?

好在Pytorch中的模型参数使用字典保存的,键是参数的名称,值是参数的具体数值。我们使用model.state_dict()获得这个字典,之后就能利用参数名称来实现导入。

请看下面的一个例子。

我们先搭建一个小小的网络。

import torch as t
from torch.nn import Module
from torch import nn
from torch.nn import functional as F
class Net(Module):
  def __init__(self):
    super(Net,self).__init__()
    self.conv1 = nn.Conv2d(3,32,3,1)
    self.conv2 = nn.Conv2d(32,3,3,1)
    self.w = nn.Parameter(t.randn(3,10))
    for p in self.children():
      nn.init.xavier_normal_(p.weight.data)
      nn.init.constant_(p.bias.data, 0)
  def forward(self, x):
    out = self.conv1(x)
    out = self.conv2(x)

    out = F.avg_pool2d(out,(out.shape[2],out.shape[3]))
    out = F.linear(out,weight=self.w)
    return out

然后我们保存这个网络的初始值。

model = Net()
t.save(model.state_dict(),'xxx.pth')

现在我们将Net修改一下,多加几个卷积层,但并不加入到forward中,仅仅出于少些几行的目的。

import torch as t
from torch.nn import Module
from torch import nn
from torch.nn import functional as F

class Net(Module):
  def __init__(self):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(3, 32, 3, 1)
    self.conv2 = nn.Conv2d(32, 3, 3, 1)
    self.conv3 = nn.Conv2d(3,64,3,1)
    self.conv4 = nn.Conv2d(64,32,3,1)
    for p in self.children():
      nn.init.xavier_normal_(p.weight.data)
      nn.init.constant_(p.bias.data, 0)

    self.w = nn.Parameter(t.randn(3, 10))
  def forward(self, x):
    out = self.conv1(x)
    out = self.conv2(x)

    out = F.avg_pool2d(out, (out.shape[2], out.shape[3]))
    out = F.linear(out, weight=self.w)
    return out

我们现在试着导入之前保存的模型参数。

path = 'xxx.pth'
model = Net()
model.load_state_dict(t.load(path))

'''
RuntimeError: Error(s) in loading state_dict for Net:
 Missing key(s) in state_dict: "conv3.weight", "conv3.bias", "conv4.weight", "conv4.bias".
'''

出现了没有在模型文件中找到error中的关键字的错误。

现在我们这样导入模型

path = 'xxx.pth'
model = Net()
save_model = t.load(path)
model_dict = model.state_dict()
state_dict = {k:v for k,v in save_model.items() if k in model_dict.keys()}
print(state_dict.keys()) # dict_keys(['w', 'conv1.weight', 'conv1.bias', 'conv2.weight', 'conv2.bias'])
model_dict.update(state_dict)
model.load_state_dict(model_dict)

看看上面的代码,很容易弄明白。其中model_dict.update的作用是更新代码中搭建的模型参数字典。为啥更新我其实并不清楚,但这一步骤是必须的,否则还会报错。

为了弄清楚为什么要更新model_dict,我们不妨分别输出state_dict和model_dict的关键值看一看。

for k in state_dict.keys():
  print(k)

'''
w
conv1.weight
conv1.bias
conv2.weight
conv2.bias
'''
for k in model_dict.keys():
  print(k)

'''
w
conv1.weight
conv1.bias
conv2.weight
conv2.bias
conv3.weight
conv3.bias
conv4.weight
conv4.bias
'''

这个结果也是预料之中的,所以我猜测,update之后,model_dict和state_dict中具有相同键的值已经同步了。updata的目的就是使model_dict带有state_dict中都具有的那一部分参数的值,对于model_dict中有的,但是save_dict中没有的参数,值不改变,参数仍然使用初始值。

以上这篇Pytorch中实现只导入部分模型参数的方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch获取模型某一层参数名及参数值方式

    1.Motivation: I wanna modify the value of some param; I wanna check the value of some param. The needed function: 2.state_dict() #generator type model.modules()#generator type named_parameters()#OrderDict type from torch import nn import torch #creat

  • 基于pytorch的保存和加载模型参数的方法

    当我们花费大量的精力训练完网络,下次预测数据时不想再(有时也不必再)训练一次时,这时候torch.save(),torch.load()就要登场了. 保存和加载模型参数有两种方式: 方式一: torch.save(net.state_dict(),path): 功能:保存训练完的网络的各层参数(即weights和bias) 其中:net.state_dict()获取各层参数,path是文件存放路径(通常保存文件格式为.pt或.pth) net2.load_state_dict(torch.loa

  • PyTorch和Keras计算模型参数的例子

    Pytorch中,变量参数,用numel得到参数数目,累加 def get_parameter_number(net): total_num = sum(p.numel() for p in net.parameters()) trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad) return {'Total': total_num, 'Trainable': trainable_num} Kera

  • pytorch 实现打印模型的参数值

    对于简单的网络 例如全连接层Linear 可以使用以下方法打印linear层: fc = nn.Linear(3, 5) params = list(fc.named_parameters()) print(params.__len__()) print(params[0]) print(params[1]) 输出如下: 由于Linear默认是偏置bias的,所有参数列表的长度是2.第一个存的是全连接矩阵,第二个存的是偏置. 对于稍微复杂的网络 例如MLP mlp = nn.Sequential

  • pytorch 求网络模型参数实例

    用pytorch训练一个神经网络时,我们通常会很关心模型的参数总量.下面分别介绍来两种方法求模型参数 一 .求得每一层的模型参数,然后自然的可以计算出总的参数. 1.先初始化一个网络模型model 比如我这里是 model=cliqueNet(里面是些初始化的参数) 2.调用model的Parameters类获取参数列表 一个典型的操作就是将参数列表传入优化器里.如下 optimizer = optim.Adam(model.parameters(), lr=opt.lr) 言归正传,继续回到参

  • Pytorch中实现只导入部分模型参数的方式

    我们在做迁移学习,或者在分割,检测等任务想使用预训练好的模型,同时又有自己修改之后的结构,使得模型文件保存的参数,有一部分是不需要的(don't expected).我们搭建的网络对保存文件来说,有一部分参数也是没有的(missed).如果依旧使用torch.load(model.state_dict())的办法,就会出现 xxx expected,xxx missed类似的错误.那么在这种情况下,该如何导入模型呢? 好在Pytorch中的模型参数使用字典保存的,键是参数的名称,值是参数的具体数

  • Pytorch模型迁移和迁移学习,导入部分模型参数的操作

    1. 利用resnet18做迁移学习 import torch from torchvision import models if __name__ == "__main__": # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = 'cpu' print("-----device:{}".format(device))

  • tensorflow 只恢复部分模型参数的实例

    我就废话不多说了,直接上代码吧! import tensorflow as tf def model_1(): with tf.variable_scope("var_a"): a = tf.Variable(initial_value=[1, 2, 3], name="a") vars = [var for var in tf.trainable_variables() if var.name.startswith("var_a")] prin

  • 在pytorch中实现只让指定变量向后传播梯度

    pytorch中如何只让指定变量向后传播梯度? (或者说如何让指定变量不参与后向传播?) 有以下公式,假如要让L对xvar求导: (1)中,L对xvar的求导将同时计算out1部分和out2部分: (2)中,L对xvar的求导只计算out2部分,因为out1的requires_grad=False: (3)中,L对xvar的求导只计算out1部分,因为out2的requires_grad=False: 验证如下: #!/usr/bin/env python2 # -*- coding: utf-

  • Pytorch中torch.nn.Softmax的dim参数用法说明

    Pytorch中torch.nn.Softmax的dim参数使用含义 涉及到多维tensor时,对softmax的参数dim总是很迷,下面用一个例子说明 import torch.nn as nn m = nn.Softmax(dim=0) n = nn.Softmax(dim=1) k = nn.Softmax(dim=2) input = torch.randn(2, 2, 3) print(input) print(m(input)) print(n(input)) print(k(inp

  • 在pytorch中对非叶节点的变量计算梯度实例

    在pytorch中一般只对叶节点进行梯度计算,也就是下图中的d,e节点,而对非叶节点,也即是c,b节点则没有显式地去保留其中间计算过程中的梯度(因为一般来说只有叶节点才需要去更新),这样可以节省很大部分的显存,但是在调试过程中,有时候我们需要对中间变量梯度进行监控,以确保网络的有效性,这个时候我们需要打印出非叶节点的梯度,为了实现这个目的,我们可以通过两种手段进行. 注册hook函数 Tensor.register_hook[2] 可以注册一个反向梯度传导时的hook函数,这个hook函数将会在

  • 基于PyTorch中view的用法说明

    相当于numpy中resize()的功能,但是用法可能不太一样. 我的理解是: 把原先tensor中的数据按照行优先的顺序排成一个一维的数据(这里应该是因为要求地址是连续存储的),然后按照参数组合成其他维度的tensor. 比如说是不管你原先的数据是[[[1,2,3],[4,5,6]]]还是[1,2,3,4,5,6],因为它们排成一维向量都是6个元素,所以只要view后面的参数一致,得到的结果都是一样的. 比如, a=torch.Tensor([[[1,2,3],[4,5,6]]]) b=tor

  • 在pytorch中如何查看模型model参数parameters

    目录 pytorch查看模型model参数parameters pytorch查看模型参数总结 1:DNN_printer 2:parameters 3:get_model_complexity_info() 4:torchstat pytorch查看模型model参数parameters 示例1:pytorch自带的faster r-cnn模型 import torch import torchvision model = torchvision.models.detection.faster

  • 在pytorch中查看可训练参数的例子

    pytorch中我们有时候可能需要设定某些变量是参与训练的,这时候就需要查看哪些是可训练参数,以确定这些设置是成功的. pytorch中model.parameters()函数定义如下: def parameters(self): r"""Returns an iterator over module parameters. This is typically passed to an optimizer. Yields: Parameter: module paramete

  • 关于pytorch中网络loss传播和参数更新的理解

    相比于2018年,在ICLR2019提交论文中,提及不同框架的论文数量发生了极大变化,网友发现,提及tensorflow的论文数量从2018年的228篇略微提升到了266篇,keras从42提升到56,但是pytorch的数量从87篇提升到了252篇. TensorFlow: 228--->266 Keras: 42--->56 Pytorch: 87--->252 在使用pytorch中,自己有一些思考,如下: 1. loss计算和反向传播 import torch.nn as nn

随机推荐