python多线程使用方法实例详解

本文实例讲述了python多线程使用方法。分享给大家供大家参考,具体如下:

threading 模块支持守护线程, 其工作方式是:守护线程一般是一个等待客户端请求服务的服务器。

如果把一个线程设置为守护线程,进程退出时不需要等待这个线程执行完成。

如果主线程准备退出时,不需要等待某些子线程完成,就可以为这些子线程设置守护线程标记。 需要在启动线程之前执行如下赋值语句: thread.daemon = True,检查线程的守护状态也只需要检查这个值即可。

整个 Python 程序将在所有非守护线程退出之后才退出, 换句话说, 就是没有剩下存活的非守护线程时才退出。

使用thread模块

以下是三种使用 Thread 类的方法(一般使用第一个或第三个方案)

  • 创建 Thread 的实例,传给它一个函数。
import threading
from time import sleep, ctime
loops = [3, 2, 1, 1, 1]
def loop(i, nsec):
  print(f'start loop {i} at: {ctime()}')
  sleep(nsec)
  print(f'end loop {i} at: {ctime()}')
def main():
  print('start at', ctime())
  threads = []
  nloops = range(len(loops))
  for i in nloops:
    t = threading.Thread(target=loop, args=(i, loops[i]))
    threads.append(t)
  for i in nloops: # start threads
    threads[i].start()
  for i in nloops: # wait for all
    threads[i].join() # threads to finish
  print(f'all done at: {ctime()}')
if __name__ == '__main__':
  main()

当所有线程都分配完成之后,通过调用每个线程的 start()方法让它们开始执行,而不是 在这之前就会执行。
相比于管理一组锁(分配、获取、释放、检查锁状态等)而言,这里只 需要为每个线程调用 join()方法即可。
join()方法将等待线程结束,或者在提供了超时时间的情况下,达到超时时间。
使用 join()方法要比等待锁释放的无限循环更加清晰(这也是这种锁 又称为自旋锁的原因)。

  • 创建 Thread 的实例,传给它一个可调用的类实例。
import threading
from time import sleep, ctime
# 创建 Thread 的实例,传给它一个可调用的类实例
loops = [3, 2, 1, 1, 1]
class ThreadFunc(object):
  def __init__(self, func, args, name=''):
    self.name = name
    self.func = func
    self.args = args
  def __call__(self):
    self.func(*self.args)
def loop(i, nsec):
  print(f'start loop {i} at: {ctime()}')
  sleep(nsec)
  print(f'end loop {i} at: {ctime()}')
def main():
  print('start at', ctime())
  threads = []
  nloops = range(len(loops))
  for i in nloops:
    t = threading.Thread(target=ThreadFunc(loop, (i, loops[i]), loop.__name__))
    threads.append(t)
  for i in nloops: # start threads
    threads[i].start()
  for i in nloops: # wait for all
    threads[i].join() # threads to finish
  print(f'all done at: {ctime()}')
if __name__ == '__main__':
  main()
  • 派生 Thread 的子类,并创建子类的实例。
import threading
from time import sleep, ctime
# 创建 Thread 的实例,传给它一个可调用的类实例
# 子类的构造函数必须先调用其基类的构造函数
# 特殊方法__call__()在 子类中必须要写为 run()
loops = [3, 2, 1, 1, 1]
class MyThread(threading.Thread):
  def __init__(self, func, args, name=''):
    threading.Thread.__init__(self)
    self.name = name
    self.func = func
    self.args = args
  def run(self):
    self.func(*self.args)
def loop(i, nsec):
  print(f'start loop {i} at: {ctime()}')
  sleep(nsec)
  print(f'end loop {i} at: {ctime()}')
def main():
  print('start at', ctime())
  threads = []
  nloops = range(len(loops))
  for i in nloops:
    t = MyThread(loop, (i, loops[i]), loop.__name__)
    threads.append(t)
  for i in nloops: # start threads
    threads[i].start()
  for i in nloops: # wait for all
    threads[i].join() # threads to finish
  print(f'all done at: {ctime()}')
if __name__ == '__main__':
  main()

使用锁

python和java一样,也具有锁机制,而且创建与使用锁都是很简便的。

一般在多线程代码中,总会有一些特 定的函数或代码块不希望(或不应该)被多个线程同时执行,通常包括修改数据库、更新文件或 其他会产生竞态条件的类似情况

锁有两种状态:锁定和未锁定。而且它也只支持两个函数:获得锁和释放锁。

一般锁的调用如下

# 加载线程的锁对象
lock = threading.Lock()
# 获取锁
lock.acquire()
# ...代码
# 释放锁
lock.release()

更简洁的方法是使用with关键字,如下代码功能同上

# 加载线程的锁对象
lock = threading.Lock()
with lock :
  #...代码

示例代码:

import threading
from time import sleep, ctime
lock = threading.Lock()
def a():
  lock.acquire()
  for x in range(5):
    print(f'a:{str(x)}')
    sleep(0.01)
  lock.release()
def b():
  lock.acquire()
  for x in range(5):
    print(f'a:{str(x)}')
    sleep(0.01)
  lock.release()
threading.Thread(target=a).start()
threading.Thread(target=b).start()

相关属性和方法

  • Thread对象的属性
属性 描述
name 线程名
ident 线程的标识符
daemon 布尔标志,表示这个线程是否是守护线程
  • Thread对象的方法
方法 描述
init(group=None, tatget=None, name=None, args=(), kwargs ={}, verbose=None, daemon=None) 实例化一个线程对象,需要有一个可调用的 target,以及其参数 args 或 kwargs。还可以传递 name 或 group 参数,不过后者还未实现。此 外 , verbose 标 志 也 是 可 接 受 的 。 而 daemon 的 值 将 会 设 定 thread.daemon 属性/标志
start() 开始执行该线程
run() 定义线程功能的方法(通常在子类中被应用开发者重写)
join (timeout=None) 直至启动的线程终止之前一直挂起;除非给出了 timeout(秒),否则 会一直阻塞
is_alive() 布尔标志,表示这个线程是否还存活
  • threading模块其他函数
函数 描述
start() 开始执行该线程
active_count() 当前活动的 Thread 对象个数
enumerate() 返回当前活动的 Thread 对象列表
settrace(func) 为所有线程设置一个 trace 函数
setprofile (func) 为所有线程设置一个 profile 函数
stack_size(size=0) 返回新创建线程的栈大小;或为后续创建的线程设定栈的大小 为 size
Lock() 加载线程的锁对象,是一个基本的锁对象,一次只能一个锁定,其余锁请求,需等待锁释放后才能获取,对象有acquire()和release()方法
RLock() 多重锁,在同一线程中可用被多次acquire。如果使用RLock,那么acquire和release必须成对出现,调用了n次acquire锁请求,则必须调用n次的release才能在线程中释放锁对象

后记

在Python多线程下,每个线程的执行方式:

1、获取GIL
2、执行代码直到sleep或者是python虚拟机将其挂起。
3、释放GIL

通常来说,多线程是一个好东西。不过由于 Python 的 GIL 的限制,多线程更适合于 I/O 密集型应用(I/O 释放了 GIL,可以允 许更多的并发),而不是计算密集型应用。对于后一种情况而言,为了实现更好的并行性,你需要使用多进程,以便让 CPU 的其他内核来执行。

请注意:多核多线程比单核多线程更差,原因是单核下多线程,每次释放GIL,唤醒的那个线程都能获取到GIL锁,所以能够无缝执行,但多核下,CPU0释放GIL后,其他CPU上的线程都会进行竞争,但GIL可能会马上又被CPU0拿到,导致其他几个CPU上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸(thrashing),导致效率更低

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • 浅析Python多线程下的变量问题

    在多线程环境下,每个线程都有自己的数据.一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁. 但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦: def process_student(name): std = Student(name) # std是局部变量,但是每个函数都要用它,因此必须传进去: do_task_1(std) do_task_2(std) def do_task_1(std): do_subtask

  • Python实现快速多线程ping的方法

    本文实例讲述了Python实现快速多线程ping的方法.分享给大家供大家参考.具体如下: #!/usr/bin/python #_*_coding:utf-8_*_ # ''' 名称:快速多线程ping程序 开发:gyhong gyh9711 日期:20:51 2011-04-25 ''' import pexpect import datetime from threading import Thread host=["192.168.1.1","192.168.1.123

  • python多线程threading.Lock锁用法实例

    本文实例讲述了python多线程threading.Lock锁的用法实例,分享给大家供大家参考.具体分析如下: python的锁可以独立提取出来 复制代码 代码如下: mutex = threading.Lock() #锁的使用 #创建锁 mutex = threading.Lock() #锁定 mutex.acquire([timeout]) #释放 mutex.release() 锁定方法acquire可以有一个超时时间的可选参数timeout.如果设定了timeout,则在超时后通过返回值

  • 浅析Python中的多进程与多线程的使用

    在批评Python的讨论中,常常说起Python多线程是多么的难用.还有人对 global interpreter lock(也被亲切的称为"GIL")指指点点,说它阻碍了Python的多线程程序同时运行.因此,如果你是从其他语言(比如C++或Java)转过来的话,Python线程模块并不会像你想象的那样去运行.必须要说明的是,我们还是可以用Python写出能并发或并行的代码,并且能带来性能的显著提升,只要你能顾及到一些事情.如果你还没看过的话,我建议你看看Eqbal Quran的文章

  • Python中多线程thread与threading的实现方法

    学过Python的人应该都知道,Python是支持多线程的,并且是native的线程.本文主要是通过thread和threading这两个模块来实现多线程的. python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用. 这里需要提一下的是python对线程的支持还不够完善,不能利用多CPU,但是下个版本的python中已经考虑改进这点,让我们拭目以待吧. threading模块里面主要是对一些线程的操作对象化了,创建

  • Python多线程同步Lock、RLock、Semaphore、Event实例

    一.多线程同步 由于CPython的python解释器在单线程模式下执行,所以导致python的多线程在很多的时候并不能很好地发挥多核cpu的资源.大部分情况都推荐使用多进程. python的多线程的同步与其他语言基本相同,主要包含: Lock & RLock :用来确保多线程多共享资源的访问. Semaphore : 用来确保一定资源多线程访问时的上限,例如资源池.  Event : 是最简单的线程间通信的方式,一个线程可以发送信号,其他的线程接收到信号后执行操作. 二.实例 1)Lock &a

  • 理解python多线程(python多线程简明教程)

    对于python 多线程的理解,我花了很长时间,搜索的大部份文章都不够通俗易懂.所以,这里力图用简单的例子,让你对多线程有个初步的认识. 单线程 在好些年前的MS-DOS时代,操作系统处理问题都是单任务的,我想做听音乐和看电影两件事儿,那么一定要先排一下顺序. (好吧!我们不纠结在DOS时代是否有听音乐和看影的应用.^_^) 复制代码 代码如下: from time import ctime,sleep def music():    for i in range(2):        prin

  • 基python实现多线程网页爬虫

    一般来说,使用线程有两种模式, 一种是创建线程要执行的函数, 把这个函数传递进Thread对象里,让它来执行. 另一种是直接从Thread继承,创建一个新的class,把线程执行的代码放到这个新的class里. 实现多线程网页爬虫,采用了多线程和锁机制,实现了广度优先算法的网页爬虫. 先给大家简单介绍下我的实现思路: 对于一个网络爬虫,如果要按广度遍历的方式下载,它是这样的: 1.从给定的入口网址把第一个网页下载下来 2.从第一个网页中提取出所有新的网页地址,放入下载列表中 3.按下载列表中的地

  • python获取多线程及子线程的返回值

    最近有个需求,用多线程比较合适,但是我需要每个线程的返回值,这就需要我在threading.Thread的基础上进行封装 import threading class MyThread(threading.Thread): def __init__(self,func,args=()): super(MyThread,self).__init__() self.func = func self.args = args def run(self): self.result = self.func(

  • python多线程编程中的join函数使用心得

    今天去辛集买箱包,下午挺晚才回来,又是恶心又是头痛.恶心是因为早上吃坏东西+晕车+回来时看到车祸现场,头痛大概是烈日和空调混合刺激而成.没有时间没有精神没有力气学习了,这篇博客就说说python中一个小小函数. 由于坑爹的学校坑爷的专业,多线程编程老师从来没教过,多线程的概念也是教的稀里糊涂,本人python也是菜鸟级别,所以遇到多线程的编程就傻眼了,别人用的顺手的join函数我却偏偏理解不来.早上在去辛集的路上想这个问题想到恶心,回来后继续写代码测试,终于有些理解了(python官方的英文解释

  • Python实现简单多线程任务队列

    最近我在用梯度下降算法绘制神经网络的数据时,遇到了一些算法性能的问题.梯度下降算法的代码如下(伪代码): def gradient_descent(): # the gradient descent code plotly.write(X, Y) 一般来说,当网络请求 plot.ly 绘图时会阻塞等待返回,于是也会影响到其他的梯度下降函数的执行速度. 一种解决办法是每调用一次 plotly.write 函数就开启一个新的线程,但是这种方法感觉不是很好. 我不想用一个像 cerely(一种分布式任

随机推荐