Numpy中的ravel_multi_index函数用法说明

最近遇到了ravel_multi_index这个函数,官方文档看不明白,Google了一番好不容易才从一堆示例代码里理解函数的意义,记录一下。

官方文档在这

这个函数主要功能为把给定的一个多维数组(函数的第一个参数)看作索引数组,索引什么呢?去索引一个形状为dims(函数的第二个参数),值为依次增大的自然数的数组中的值(可看做由list(range(N))的数组reshape(dims)而来),意义即为用一个唯一的一维数来定位(保存)原数组的二维(或多维(i,j,k,…))的数对的信息。

把文档里的示例代码贴一下来解释:

>>> arr = np.array([[3,6,6],[4,5,1]])
>>> np.ravel_multi_index(arr, (7,6))
array([22, 41, 37])
>>> np.ravel_multi_index(arr, (7,6), order='F')
array([31, 41, 13])
>>> np.ravel_multi_index(arr, (4,6), mode='clip')
array([22, 23, 19])
>>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
array([12, 13, 13])
>>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
1621

示例中arr即为要转换的多维数组,把arr的内容当作索引,即[3,6,6]为横坐标,[4,5,1]为纵坐标,去索引形状为(7,6),内容为从0开始,从左往右,从上往下依次增大的自然数的数组中的值。

例如第一个要索引的数[3,4]即为(7,6)数组中第4行,第5列的的值,即为3*6+4=22,即为结果中的第一个数。依次类推。

了解函数功能后,其他参数具体可见官方文档说明。

补充:numpy.unravel_index 与 numpy.ravel_multi_index的理解

遇到numpy.ravel_multi_index 与numpy.unravel_index 这两个函数,查了网上的很多资料 都没讲的很清楚,记录一下。

这两个函数是相对应的:

numpy.unravel_index(indices, shape, order='C')

其中indices是表示一个一维数组的index,将这个一维数组转换成大小为shape([col, row])shape矩阵决定了转变后得到的数组的行和列的大小,进而得到index在新的二维矩阵 中的行index 和列index 其中order决定先是行index,还是先是列index 'C'先是列index 再是行index ‘F'先是行index 再是列index

 np.unravel_index([22, 41, 37], (7,6))
(array([3, 6, 6]), array([4, 5, 1]))

numpy.ravel_multi_index是numpy.unravel_index反过来的过程,

numpy.ravel_multi_index(multi_index, dims, mode='raise', order='C')

根据multi_index中不同数组代表的具体的索引,以及该数组的dims的大小 ,得到将该数组flat成一维数组 数据在一位数组中的位置。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • numpy返回array中元素的index方法

    如下所示: import numpy a = numpy.array(([3,2,1],[2,5,7],[4,7,8])) itemindex = numpy.argwhere(a == 7) print (itemindex) print a 以上这篇numpy返回array中元素的index方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • Pandas之MultiIndex对象的示例详解

    约定 import pandas as pd from pandas import DataFrame import numpy as np MultiIndex MultiIndex表示多级索引,它是从Index继承过来的,其中多级标签用元组对象来表示. 一.创建MultiIndex对象 创建方式一:元组列表 m_index1=pd.Index([("A","x1"),("A","x2"),("B",&q

  • 详解python中的index函数用法

    1.函数的创建 def fun(): #定义 print('hellow') #函数的执行代码 retrun 1 #返回值 fun() #执行函数 2.函数的参数 普通参数 :要按照顺序输入参数 def fun(a,b,c): print(a) print(b) print(c) return a fun(11,22,33) #输出:11 #输出:22 #输出:33 指定参数:输入参数时可以不按照顺序输入 def fun(a,b,c): print(a) print(b) print(c) re

  • Python numpy 常用函数总结

    Numpy是什么 在没给大家介绍numpy之前先给大家说下python的基本概念. Python 是一种高级的,动态的,多泛型的编程语言.Python代码很多时候看起来就像是伪代码一样,因此你可以使用很少的几行可读性很高的代码来实现一个非常强大的想法. numpy很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数. 数组 数组常用函数 1.w

  • Numpy中的ravel_multi_index函数用法说明

    最近遇到了ravel_multi_index这个函数,官方文档看不明白,Google了一番好不容易才从一堆示例代码里理解函数的意义,记录一下. 官方文档在这 这个函数主要功能为把给定的一个多维数组(函数的第一个参数)看作索引数组,索引什么呢?去索引一个形状为dims(函数的第二个参数),值为依次增大的自然数的数组中的值(可看做由list(range(N))的数组reshape(dims)而来),意义即为用一个唯一的一维数来定位(保存)原数组的二维(或多维(i,j,k,-))的数对的信息. 把文档

  • 关于numpy中np.nonzero()函数用法的详解

    np.nonzero函数是numpy中用于得到数组array中非零元素的位置(数组索引)的函数.一般来说,通过help(np.nonzero)能够查看到该函数的解析与例程.但是,由于例程为英文缩写,阅读起来还是很费劲,因此,本文将其英文解释翻译成中文,便于理解. 解释 nonzero(a) 返回数组a中非零元素的索引值数组. (1)只有a中非零元素才会有索引值,那些零值元素没有索引值: (2)返回的索引值数组是一个2维tuple数组,该tuple数组中包含一维的array数组.其中,一维arra

  • 基于numpy中的expand_dims函数用法

    常见的一种应用场景: 条件:假设A的shape为[4, 2],B的shape为[5, 2] 目的:实现A中的每一行, 减去B中的所有行(broadcast操作). 实现: A1 = np.expand_dims(A, -2) => A1的shape变为[4, 1, 2] B1 = np.expand_dims(B, 0) => B1的shape变为[1, 5, 2] A1 - B1 其他示例: wh = np.random.randint(1,3, size=(4,2)) np.expand_

  • python 的numpy库中的mean()函数用法介绍

    1. mean() 函数定义: numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<class numpy._globals._NoValue at 0x40b6a26c>)[source] Compute the arithmetic mean along the specified axis. Returns the average of the array elements. The average is taken over

  • python使用numpy中的size()函数实例用法详解

    在python中,提到如何计算多维数组和矩阵,那一定会想到numpy.numpy定义了矩阵和数组,为它们提供了相关的运算.size中文解释为大家.尺寸的意思,如果想要统计矩阵元素个数,使用size()函数就可以解决. 1.Numpy size()函数 主要是用来统计矩阵元素个数,或矩阵某一维上的元素个数的函数. 2.使用语法 numpy.size(a, axis=None) 3.使用参数 a:输入的矩阵 axis:int型的可选参数,指定返回哪一维的元素个数.当没有指定时,返回整个矩阵的元素个数

  • Numpy中的shape函数的用法详解

    shape函数的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度,相当于行数.它的输入参数可以是一个整数表示维度,也可以是一个矩阵.shape函数返回的是一个元组,表示数组(矩阵)的维度,例子如下: 1. 数组(矩阵)只有一个维度时,shape只有shape[0],返回的是该一维数组(矩阵)中元素的个数,通俗点说就是返回列数,因为一维数组只有一行,一维情况中array创建的可以看做list(或一维数组),创建时用()和[ ]都可以,多维就不可以这样子了,这里使用[ ],请看下

  • Python numpy中矩阵的基本用法汇总

    Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的matrix与MATLAB中matrices等价. 直接看一个例子: import numpy as np a = np.mat('1 3;5 7')

  • 基于keras中的回调函数用法说明

    keras训练 fit( self, x, y, batch_size=32, nb_epoch=10, verbose=1, callbacks=[], validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None ) 1. x:输入数据.如果模型只有一个输入,那么x的类型是numpy array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应

  • Numpy中np.max的用法及np.maximum区别

    Numpy中np.max(即np.amax)的用法 >>> import numpy as np >>> help(np.max) 当遇到一个不认识的函数,我们就需要查看一下帮助文档 np.max与np.amax是同名函数 amax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>) Return the maximum

  • Numpy中的repeat函数使用

    Numpy中repeat函数使用 Numpy是Python强大的数学计算库,和Scipy一起构建起Python科学计算生态.在本节下面我们重点介绍下repeat函数的用法,我们在Python中import numpy,help(numpy.repeat),会出现以下界面: repeat是属于ndarray对象的方法,使用它可以通过两个管道: (1)numpy.repeat(a,repeats,axis=None); (2)object(ndarray).repeat(repeats,axis=N

随机推荐