pytorch  网络参数 weight bias 初始化详解

权重初始化对于训练神经网络至关重要,好的初始化权重可以有效的避免梯度消失等问题的发生。

在pytorch的使用过程中有几种权重初始化的方法供大家参考。

注意:第一种方法不推荐。尽量使用后两种方法。

# not recommend
def weights_init(m):
 classname = m.__class__.__name__
 if classname.find('Conv') != -1:
  m.weight.data.normal_(0.0, 0.02)
 elif classname.find('BatchNorm') != -1:
  m.weight.data.normal_(1.0, 0.02)
  m.bias.data.fill_(0)
# recommend
def initialize_weights(m):
 if isinstance(m, nn.Conv2d):
  m.weight.data.normal_(0, 0.02)
  m.bias.data.zero_()
 elif isinstance(m, nn.Linear):
  m.weight.data.normal_(0, 0.02)
  m.bias.data.zero_()
# recommend
def weights_init(m):
 if isinstance(m, nn.Conv2d):
  nn.init.xavier_normal_(m.weight.data)
  nn.init.xavier_normal_(m.bias.data)
 elif isinstance(m, nn.BatchNorm2d):
  nn.init.constant_(m.weight,1)
  nn.init.constant_(m.bias, 0)
 elif isinstance(m, nn.BatchNorm1d):
  nn.init.constant_(m.weight,1)
  nn.init.constant_(m.bias, 0)

编写好weights_init函数后,可以使用模型的apply方法对模型进行权重初始化。

net = Residual() # generate an instance network from the Net class

net.apply(weights_init) # apply weight init

补充知识:Pytorch权值初始化及参数分组

1. 模型参数初始化

# ————————————————— 利用model.apply(weights_init)实现初始化
def weights_init(m):
  classname = m.__class__.__name__
  if classname.find('Conv') != -1:
    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
    m.weight.data.normal_(0, math.sqrt(2. / n))
    if m.bias is not None:
      m.bias.data.zero_()
  elif classname.find('BatchNorm') != -1:
    m.weight.data.fill_(1)
    m.bias.data.zero_()
  elif classname.find('Linear') != -1:
    n = m.weight.size(1)
    m.weight.data.normal_(0, 0.01)
    m.bias.data = torch.ones(m.bias.data.size())

# ————————————————— 直接放在__init__构造函数中实现初始化
for m in self.modules():
  if isinstance(m, nn.Conv2d):
    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
    m.weight.data.normal_(0, math.sqrt(2. / n))
    if m.bias is not None:
      m.bias.data.zero_()
  elif isinstance(m, nn.BatchNorm2d):
    m.weight.data.fill_(1)
    m.bias.data.zero_()
  elif isinstance(m, nn.BatchNorm1d):
    m.weight.data.fill_(1)
    m.bias.data.zero_()
  elif isinstance(m, nn.Linear):
    nn.init.xavier_uniform_(m.weight.data)
    if m.bias is not None:
      m.bias.data.zero_()

# —————————————————
self.weight = Parameter(torch.Tensor(out_features, in_features))
self.bias = Parameter(torch.FloatTensor(out_features))
nn.init.xavier_uniform_(self.weight)
nn.init.zero_(self.bias)
nn.init.constant_(m, initm)
# nn.init.kaiming_uniform_()
# self.weight.data.normal_(std=0.001)

2. 模型参数分组weight_decay

def separate_bn_prelu_params(model, ignored_params=[]):
  bn_prelu_params = []
  for m in model.modules():
    if isinstance(m, nn.BatchNorm2d):
      ignored_params += list(map(id, m.parameters()))
      bn_prelu_params += m.parameters()
    if isinstance(m, nn.BatchNorm1d):
      ignored_params += list(map(id, m.parameters()))
      bn_prelu_params += m.parameters()
    elif isinstance(m, nn.PReLU):
      ignored_params += list(map(id, m.parameters()))
      bn_prelu_params += m.parameters()
  base_params = list(filter(lambda p: id(p) not in ignored_params, model.parameters()))

  return base_params, bn_prelu_params, ignored_params

OPTIMIZER = optim.SGD([
    {'params': base_params, 'weight_decay': WEIGHT_DECAY},
    {'params': fc_head_param, 'weight_decay': WEIGHT_DECAY * 10},
    {'params': bn_prelu_params, 'weight_decay': 0.0}
    ], lr=LR, momentum=MOMENTUM ) # , nesterov=True

Note 1:PReLU(x) = max(0,x) + a * min(0,x). Here a is a learnable parameter. When called without arguments, nn.PReLU() uses a single parameter a across all input channels. If called with nn.PReLU(nChannels), a separate a is used for each input channel.

Note 2: weight decay should not be used when learning a for good performance.

Note 3: The default number of a to learn is 1, the default initial value of a is 0.25.

3. 参数分组weight_decay–其他

第2节中的内容可以满足一般的参数分组需求,此部分可以满足更个性化的分组需求。参考:face_evoLVe_Pytorch-master

自定义schedule

def schedule_lr(optimizer):
  for params in optimizer.param_groups:
    params['lr'] /= 10.
  print(optimizer)

方法一:利用model.modules()和obj.__class__ (更普适)

# model.modules()和model.children()的区别:model.modules()会迭代地遍历模型的所有子层,而model.children()只会遍历模型下的一层
# 下面的关键词if 'model',源于模型定义文件。如model_resnet.py中自定义的所有nn.Module子类,都会前缀'model_resnet',所以可通过这种方式一次性筛选出自定义的模块
def separate_irse_bn_paras(model):
  paras_only_bn = []
  paras_no_bn = []
  for layer in model.modules():
    if 'model' in str(layer.__class__):		      # eg. a=[1,2] type(a): <class 'list'> a.__class__: <class 'list'>
      continue
    if 'container' in str(layer.__class__):       # 去掉Sequential型的模块
      continue
    else:
      if 'batchnorm' in str(layer.__class__):
        paras_only_bn.extend([*layer.parameters()])
      else:
        paras_no_bn.extend([*layer.parameters()])  # extend()用于在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)

  return paras_only_bn, paras_no_bn

方法二:调用modules.parameters和named_parameters()

但是本质上,parameters()是根据named_parameters()获取,named_parameters()是根据modules()获取。使用此方法的前提是,须按下文1,2中的方式定义模型,或者利用Sequential+OrderedDict定义模型。

def separate_resnet_bn_paras(model):
  all_parameters = model.parameters()
  paras_only_bn = []

  for pname, p in model.named_parameters():
    if pname.find('bn') >= 0:
      paras_only_bn.append(p)

  paras_only_bn_id = list(map(id, paras_only_bn))
  paras_no_bn = list(filter(lambda p: id(p) not in paras_only_bn_id, all_parameters))

  return paras_only_bn, paras_no_bn

两种方法的区别

参数分组的区别,其实对应了模型构造时的区别。举例:

1、构造ResNet的basic block,在__init__()函数中定义了

self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = BatchNorm2d(planes)
self.relu = ReLU(inplace = True)
…

2、在forward()中定义

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
…

3、对ResNet取model.name_parameters()返回的pname形如:

‘layer1.0.conv1.weight'
‘layer1.0.bn1.weight'
‘layer1.0.bn1.bias'
# layer对应conv2_x, …, conv5_x; '0'对应各layer中的block索引,比如conv2_x有3个block,对应索引为layer1.0, …, layer1.2; 'conv1'就是__init__()中定义的self.conv1

4、若构造model时采用了Sequential(),则model.name_parameters()返回的pname形如:

‘body.3.res_layer.1.weight',此处的1.weight实际对应了BN的weight,无法通过pname.find(‘bn')找到该模块。

self.res_layer = Sequential(
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
BatchNorm2d(depth),
ReLU(depth),
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
BatchNorm2d(depth)
)

5、针对4中的情况,两种解决办法:利用OrderedDict修饰Sequential,或利用方法一

downsample = Sequential( OrderedDict([
(‘conv_ds', conv1x1(self.inplanes, planes * block.expansion, stride)),
(‘bn_ds', BatchNorm2d(planes * block.expansion)),
]))
# 如此,相应模块的pname将会带有'conv_ds',‘bn_ds'字样

以上这篇pytorch 网络参数 weight bias 初始化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 对Pytorch神经网络初始化kaiming分布详解

    函数的增益值 torch.nn.init.calculate_gain(nonlinearity, param=None) 提供了对非线性函数增益值的计算. 增益值gain是一个比例值,来调控输入数量级和输出数量级之间的关系. fan_in和fan_out pytorch计算fan_in和fan_out的源码 def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2:

  • python使用torch随机初始化参数

    目录 1.从均匀分布中生成值 2.分布N(mean, std)中生成值 3.使用值val填充输入Tensor 3.1.使用0,或者1 填充数据 4.用单位矩阵填充二维输入张量 5.其他常用的初始化方法 1.从均匀分布中生成值 w = torch.zeros(3, 5) w Out[75]:  tensor([[0., 0., 0., 0., 0.],         [0., 0., 0., 0., 0.],         [0., 0., 0., 0., 0.]]) torch.nn.ini

  • Pytorch 实现权重初始化

    在TensorFlow中,权重的初始化主要是在声明张量的时候进行的. 而PyTorch则提供了另一种方法:首先应该声明张量,然后修改张量的权重.通过调用torch.nn.init包中的多种方法可以将权重初始化为直接访问张量的属性. 1.不初始化的效果 在Pytorch中,定义一个tensor,不进行初始化,打印看看结果: w = torch.Tensor(3,4) print (w) 可以看到这时候的初始化的数值都是随机的,而且特别大,这对网络的训练必定不好,最后导致精度提不上,甚至损失无法收敛

  • Pytorch - TORCH.NN.INIT 参数初始化的操作

    路径: https://pytorch.org/docs/master/nn.init.html#nn-init-doc 初始化函数:torch.nn.init # -*- coding: utf-8 -*- """ Created on 2019 @author: fancp """ import torch import torch.nn as nn w = torch.empty(3,5) #1.均匀分布 - u(a,b) #torch.n

  • Pytorch卷积层手动初始化权值的实例

    由于研究关系需要自己手动给卷积层初始化权值,但是好像博客上提到的相关文章比较少(大部分都只提到使用nn.init里的按照一定分布初始化方法),自己参考了下Pytorch的官方文档,发现有两种方法吧. 所以mark下. import torch import torch.nn as nn import torch.optim as optim import numpy as np # 第一一个卷积层,我们可以看到它的权值是随机初始化的 w=torch.nn.Conv2d(2,2,3,padding

  • python PyTorch参数初始化和Finetune

    前言 这篇文章算是论坛PyTorch Forums关于参数初始化和finetune的总结,也是我在写代码中用的算是"最佳实践"吧.最后希望大家没事多逛逛论坛,有很多高质量的回答. 参数初始化 参数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在. 所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法

  • pytorch自定义初始化权重的方法

    在常见的pytorch代码中,我们见到的初始化方式都是调用init类对每层所有参数进行初始化.但是,有时我们有些特殊需求,比如用某一层的权重取优化其它层,或者手动指定某些权重的初始值. 核心思想就是构造和该层权重同一尺寸的矩阵去对该层权重赋值.但是,值得注意的是,pytorch中各层权重的数据类型是nn.Parameter,而不是Tensor或者Variable. import torch import torch.nn as nn import torch.optim as optim imp

  • pytorch  网络参数 weight bias 初始化详解

    权重初始化对于训练神经网络至关重要,好的初始化权重可以有效的避免梯度消失等问题的发生. 在pytorch的使用过程中有几种权重初始化的方法供大家参考. 注意:第一种方法不推荐.尽量使用后两种方法. # not recommend def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.

  • Pytorch自定义CNN网络实现猫狗分类详解过程

    目录 前言 一. 数据预处理 二. 定义网络 三. 训练模型 前言 数据集下载地址: 链接: https://pan.baidu.com/s/17aglKyKFvMvcug0xrOqJdQ?pwd=6i7m Dogs vs. Cats(猫狗大战)来源Kaggle上的一个竞赛题,任务为给定一个数据集,设计一种算法中的猫狗图片进行判别. 数据集包括25000张带标签的训练集图片,猫和狗各125000张,标签都是以cat or dog命名的.图像为RGB格式jpg图片,size不一样.截图如下: 一.

  • Pytorch之卷积层的使用详解

    1.简介(torch.nn下的) 卷积层主要使用的有3类,用于处理不同维度的数据 参数 Parameters: in_channels(int) – 输入信号的通道 out_channels(int) – 卷积产生的通道 kerner_size(int or tuple) - 卷积核的尺寸 stride(int or tuple, optional) - 卷积步长 padding (int or tuple, optional)- 输入的每一条边补充0的层数 dilation(int or tu

  • PyTorch里面的torch.nn.Parameter()详解

    在看过很多博客的时候发现了一个用法self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size)),首先可以把这个函数理解为类型转换函数,将一个不可训练的类型Tensor转换成可以训练的类型parameter并将这个parameter绑定到这个module里面(net.parameter()中就有这个绑定的parameter,所以在参数优化的时候可以进行优化的),所以经过类型转换这个self.v变成了模型的一部分,成为了模型中根据训练可以改动

  • PyTorch中torch.nn.Linear实例详解

    目录 前言 1. nn.Linear的原理: 2. nn.Linear的使用: 3. nn.Linear的源码定义: 补充:许多细节需要声明 总结 前言 在学习transformer时,遇到过非常频繁的nn.Linear()函数,这里对nn.Linear进行一个详解.参考:https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html 1. nn.Linear的原理: 从名称就可以看出来,nn.Linear表示的是线性变

  • PyTorch中反卷积的用法详解

    pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True) class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, b

  • Pytorch 的损失函数Loss function使用详解

    1.损失函数 损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一.另一个必不可少的要素是优化器. 损失函数是指用于计算标签值和预测值之间差异的函数,在机器学习过程中,有多种损失函数可供选择,典型的有距离向量,绝对值向量等. 损失Loss必须是标量,因为向量无法比较大小(向量本身需要通过范数等标量来比较). 损失函数一般分为4种,平方损失函数,对数损失函数,HingeLoss 0-1 损失函数,绝对值损失函数. 我们先定义两个二维数组,然后用不同的损失函数计算其损失值. import

  • 关于Pytorch的MNIST数据集的预处理详解

    关于Pytorch的MNIST数据集的预处理详解 MNIST的准确率达到99.7% 用于MNIST的卷积神经网络(CNN)的实现,具有各种技术,例如数据增强,丢失,伪随机化等. 操作系统:ubuntu18.04 显卡:GTX1080ti python版本:2.7(3.7) 网络架构 具有4层的CNN具有以下架构. 输入层:784个节点(MNIST图像大小) 第一卷积层:5x5x32 第一个最大池层 第二卷积层:5x5x64 第二个最大池层 第三个完全连接层:1024个节点 输出层:10个节点(M

  • 对pytorch网络层结构的数组化详解

    最近再写openpose,它的网络结构是多阶段的网络,所以写网络的时候很想用列表的方式,但是直接使用列表不能将网络中相应的部分放入到cuda中去. 其实这个问题很简单的,使用moduleList就好了. 1 我先是定义了一个函数,用来根据超参数,建立一个基础网络结构 stage = [[3, 3, 3, 1, 1], [7, 7, 7, 7, 7, 1, 1]] branches_cfg = [[[128, 128, 128, 512, 38], [128, 128, 128, 512, 19]

  • Pytorch 多块GPU的使用详解

    注:本文针对单个服务器上多块GPU的使用,不是多服务器多GPU的使用. 在一些实验中,由于Batch_size的限制或者希望提高训练速度等原因,我们需要使用多块GPU.本文针对Pytorch中多块GPU的使用进行说明. 1. 设置需要使用的GPU编号 import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,4" ids = [0,1] 比如我们需要使用第0和第4块GPU,只用上述三行代码即可. 其中第二行指程序只能看到第1

随机推荐