解决numpy矩阵相减出现的负值自动转正值的问题

问题描述

今天在使用Numpy中的矩阵做相减操作时,出现了一些本应为负值的位置自动转换为了正值,

观察发现转换后的正值为原本的负值加上256得到,具体情况如下:

正常情况矩阵相减样例如下

>>> import numpy as np
>>> arr = np.array([98,100,103,161,192,210])
>>> brr = np.array([105,105,106,197,196,195])
>>> crr = arr-brr
>>> print(crr)
[ -7 -5 -3 -36 -4 15]

错误代码如下:

path = './image/Blur/blur5.png'
kernel_size = (21, 21);
sigma = 0;
img = cv2.imread(path)
img2gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img2blur = cv2.GaussianBlur(img2gray, kernel_size, sigma);
grayMat = np.matrix(img2gray)
blurMat = np.matrix(img2blur)
finalMat = blurMat-grayMat
print(grayMat[0,0:10])
print(blurMat[0,0:10])
print(finalMat[0,0:10])

得到的结果值如下:

[[173 171 169 171 174 179 181 182 180 180]]
[[172 172 172 173 173 174 174 173 171 168]]
[[255 1 3 2 255 251 249 247 247 244]]

解决方案

以上出现的矩阵相减得到的结果值自动转换的问题是因为直接通过grayMat = np.matrix(img2gray)

得到的dtype类型是unit8类型的,只需要在开始时设置为np.int32即可正常完成相减.即:

grayMat = np.matrix(img2gray ,dtype=np.float64)

补充知识:有关于python数字图像处理出现矩阵相减没有负数(值都在0-255)的情况分析

问题的发现:

这些天在做我们本校课程机器学习大作业的过程中遇到了一些瓶颈:在我使用有关数字图像矩阵运算的过程中两个参数矩阵相减(譬如 R通道的值-G通道的值)的时候,测试结果的输出一直是正数,且其值都在(0-255)中,这给我带来了不少麻烦。

测试代码如下

print(imgs_train[1][:,:,1])
print("====================================")
print(imgs_train[1][:,:,2])
print("====================================")
print(imgs_train[1][:,:,1]-imgs_train[1][:,:,2])

输出结果为

[[141 143 144 ... 90 90 68]
 [139 141 141 ... 88 90 68]
 [140 141 140 ... 87 90 68]
 ...
 [ 52 52 52 ... 85 83 81]
 [ 52 52 52 ... 85 83 81]
 [ 52 52 52 ... 85 83 81]]
====================================
[[171 173 172 ... 106 107 84]
 [169 171 169 ... 106 107 86]
 [169 170 169 ... 107 109 88]
 ...
 [ 40 40 43 ... 68 66 64]
 [ 40 40 43 ... 68 66 64]
 [ 40 40 43 ... 68 66 64]]
====================================
[[226 226 228 ... 240 239 240]
 [226 226 228 ... 238 239 238]
 [227 227 227 ... 236 237 236]
 ...
 [ 12 12 9 ... 17 17 17]
 [ 12 12 9 ... 17 17 17]
 [ 12 12 9 ... 17 17 17]]

可以看得出来,虽然两个矩阵相减,但是理应为负值的元素却像是取模了一般又变为了正数(255+计算结果),导致这样情况的原因其实是因为矩阵的元素类型有关。默认来说这样的矩阵类型是uint8即无符号8bit整型,这样进行相减当然得不出正确结果。

问题的解决

在查阅相关资料之后,发现可以通过设置其元素格式进行运算,从而规避了无负数结果的发生。

测试代码如下:

print(imgs_train[1][:,:,1])
print("====================================")
print(imgs_train[1][:,:,2])
print("====================================")
print(imgs_train[1][:,:,1].astype(np.float32)-imgs_train[1][:,:,2].astype(np.float32))

结果显示为:

[[141 143 144 ... 90 90 68]
 [139 141 141 ... 88 90 68]
 [140 141 140 ... 87 90 68]
 ...
 [ 52 52 52 ... 85 83 81]
 [ 52 52 52 ... 85 83 81]
 [ 52 52 52 ... 85 83 81]]
====================================
[[171 173 172 ... 106 107 84]
 [169 171 169 ... 106 107 86]
 [169 170 169 ... 107 109 88]
 ...
 [ 40 40 43 ... 68 66 64]
 [ 40 40 43 ... 68 66 64]
 [ 40 40 43 ... 68 66 64]]
====================================
[[-30. -30. -28. ... -16. -17. -16.]
 [-30. -30. -28. ... -18. -17. -18.]
 [-29. -29. -29. ... -20. -19. -20.]
 ...
 [ 12. 12. 9. ... 17. 17. 17.]
 [ 12. 12. 9. ... 17. 17. 17.]
 [ 12. 12. 9. ... 17. 17. 17.]]

综上所述,在遇到矩阵不明数值类型的时候可以指定其类型,之后矩阵元素就会以这样的数值类型进行计算。

以上这篇解决numpy矩阵相减出现的负值自动转正值的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 基于python检查矩阵计算结果

    鉴于最近复习线性代数计算量较大,且1800答案常常忽略一些逆阵.行列式的计算答案,故用Python写出矩阵的简单计算程序,便于检查出错的步骤. 1.行列式 可自行更改阶数 from numpy import * # 求行列式 ,建议:取小数点前整数 A = array([[3, 1, 1, 1], [1, 3, 1, 1], [1, 1, 3, 1], [1, 1, 1, 3]]) B = linalg.det(A) print(B) # 48.000000000000014 正确答案:48 2

  • numpy矩阵数值太多不能全部显示的解决

    numpy矩阵数值太多不能全部显示,可以运行以下命令令全部数值展示出来 np.set_printoptions(threshold='nan') 补充知识:python中numpy的默认使用科学计数法显示数据的改变办法 在文件头加一句代码: import numpy as np np.set_printoptions(suppress=True) 以上这篇numpy矩阵数值太多不能全部显示的解决就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python矩阵运算,转置,逆运算,共轭矩阵实例

    我就废话不多说了,大家还是直接看代码吧! #先定义两个矩阵 X=np.array([[1,2104,5,1,45],[1,1416,3,2,40],[1,1534,3,2,30],[1,852,2,1,36]]) y=np.array([45,40,30,36]) #内积以后发现 c=np.dot(X.T,X) c array([[ 4, 5906, 13, 6, 151], [ 5906, 9510932, 21074, 8856, 228012], [ 13, 21074, 47, 19,

  • 解决numpy矩阵相减出现的负值自动转正值的问题

    问题描述 今天在使用Numpy中的矩阵做相减操作时,出现了一些本应为负值的位置自动转换为了正值, 观察发现转换后的正值为原本的负值加上256得到,具体情况如下: 正常情况矩阵相减样例如下 >>> import numpy as np >>> arr = np.array([98,100,103,161,192,210]) >>> brr = np.array([105,105,106,197,196,195]) >>> crr = a

  • Java用BigDecimal解决double类型相减时可能存在的误差

    double类型的两个数相减可能存在误差,比如System.out.println(2099 - 1999.9);的结果为99.09999999999991 可以用BigDecimal解决: public class TestDouble { //两个Double数相减 public static Double sub(Double d1, Double d2) { if (d1 == null || d2 == null) { return null; } BigDecimal b1 = ne

  • mysql unsigned 用法及相减出现补数溢出解决方法

    unsigned 既为非负数,用此类型可以增加数据长度! 例如如果 tinyint最大是127,那 tinyint unsigned 最大 就可以到 127 * 2 unsigned 属性只针对整型,而binary属性只用于char 和varchar. 类型 说明 tinyint 非常小的整数 smallint 较小整数 mediumint 中等大小整数 int 标准整数 bigint 较大整数 float 单精度浮点数 double 双精度浮点数 decimal 一个串的浮点数 每种数值类型的

  • 对Python 中矩阵或者数组相减的法则详解

    最近在做编程练习,发现有些结果的值与答案相差较大,通过分析比较得出结论,大概过程如下: 定义了一个计算损失的函数: def error(yhat,label): yhat = np.array(yhat) label = np.array(label) error_sum = ((yhat - label)**2).sum() return error_sum 主要出现问题的是 yhat - label 部分,要强调的是一定要保证两者维度是相同的!这点很重要,否则就会按照python的广播机制进

  • 完美解决java double数相加和相减的方案

    我就废话不多说了,大家还是直接看代码吧~ /** * double的计算不精确,会有类似0.0000000000000002的误差,正确的方法是使用BigDecimal或者用整型 * 整型地方法适合于货币精度已知的情况,比如12.11+1.10转成1211+110计算,最后再/100即可 * 以下是摘抄的BigDecimal方法: */ public class DoubleUtils implements Serializable { private static final long ser

  • ThinkPHP自定义函数解决模板标签加减运算的方法

    本文实例讲述了ThinkPHP自定义函数解决模板标签加减运算的方法.分享给大家供大家参考.具体如下: 实际项目中,我们经常需要标签变量加减运算的操作.但是,在ThinkPHP中,并不支持模板变量直接运算的操作. 幸运的是,它提供了自定义函数的方法,我们可以利用自定义函数解决: ThinkPHP模板自定义函数语法如下: 格式:{:function(-)} (参考官方帮助文档:http://thinkphp.cn/Manual/196) 利用这个,我们来试做加法和减法. 一.在ThinkPHP中定义

  • Python实现两个list对应元素相减操作示例

    本文实例讲述了Python实现两个list对应元素相减操作.分享给大家供大家参考,具体如下: 两个list的对应元素操作,这里以相减为例: # coding=gbk v1 = [21, 34, 45] v2 = [55, 25, 77] #v = v2 - v1 # Error: TypeError: unsupported operand type(s) for -: 'list' and 'list' v = list(map(lambda x: x[0]-x[1], zip(v2, v1)

  • C#实现两个时间相减的方法

    本文实例讲述了C#实现两个时间相减的方法.分享给大家供大家参考.具体实现方法如下: 复制代码 代码如下: using System;  using System.Collections.Generic;  using System.Linq;  using System.Text;    namespace Test  {      class Program      {          static void Main(string[] args)          {          

  • Python编程给numpy矩阵添加一列方法示例

    首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵 import numpy as np a = np.array([[1,2,3],[4,5,6],[7,8,9]]) b = np.ones(3) c = np.array([[1,2,3,1],[4,5,6,1],[7,8,9,1]]) PRint(a) print(b) print(c) [[1 2 3] [4 5 6] [7 8 9]] [ 1. 1. 1.] [[1 2 3 1] [4

随机推荐