keras 获取某层输出 获取复用层的多次输出实例
官方文档很全面,搜索功能也很好。但是如果你想单独实现某个功能,根本无从搜寻。于是我写了这个笔记。从功能出发。
两个tensor经过一个layer实例会产生两个输出。
a = Input(shape=(280, 256)) b = Input(shape=(280, 256)) lstm = LSTM(32) encoded_a = lstm(a) encoded_b = lstm(b) lstm.output
这个代码有错误,因为最后一行没有指定lstm这个layer实例的那个输出。
>> AttributeError: Layer lstm_1 has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use `get_output_at(node_index)` instead.
所以如果想要得到多个输出中的一个:
assert lstm.get_output_at(0) == encoded_a
assert lstm.get_output_at(1) == encoded_b
补充知识:kears训练中如何实时输出卷积层的结果?
在训练unet模型时,发现预测结果和真实结果几乎完全差距太大,想着打印每层输出的结果查看问题在哪?
但是发现kears只是提供了训练完成后在模型测试时输出每层的函数。并没有提供训练时的函数,同时本着不对原有代码进行太大改动。最后实现了这个方法。
即新建一个输出节点添加到现有的网络结构里面。
#新建一个打印层。 class PrintLayer(Layer): #初始化方法,不须改变 def __init__(self, **kwargs): super(PrintLayer, self).__init__(**kwargs) #调用该层时执行的方法 def call(self, x): x = tf.Print(x,[x],message="x is: ",summarize=65536) #调用tf的Print方法打印tensor方法,第一个参数为输入的x,第二个参数为要输出的参数,summarize参数为输出的元素个数。 return x; #一定要返回tf.Print()函数返回的变量,不要直接使用传入的变量。 #接着在网络中引入 conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) print11 = PrintLayer()(conv9) conv10 = Conv2D(1, 1, activation = 'sigmoid')(print11) #PrintLayer层处理的结果一定要在下一层用到,不然不会打印tensor。该结点可以加在任何结点之间。
以上这篇keras 获取某层输出 获取复用层的多次输出实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Keras设定GPU使用内存大小方式(Tensorflow backend)
通过设置Keras的Tensorflow后端的全局变量达到. import os import tensorflow as tf import keras.backend.tensorflow_backend as KTF def get_session(gpu_fraction=0.3): '''Assume that you have 6GB of GPU memory and want to allocate ~2GB''' num_threads = os.environ.get('OM
-
给keras层命名,并提取中间层输出值,保存到文档的实例
更新: 感谢评论区提供的方案. 采用model.summary(),model.get_config()和for循环均可获得Keras的层名. 示例如下图 对于keras特定层的命名,只需在层内添加 name 即可 model.add(Activation('softmax',name='dense_1') ) # 注意 name 要放于函数内 #提取中间层 from keras.models import Model import keras layer_name = 'dense_1' #获
-
浅谈keras中的Merge层(实现层的相加、相减、相乘实例)
[题目]keras中的Merge层(实现层的相加.相减.相乘) 详情请参考: Merge层 一.层相加 keras.layers.Add() 添加输入列表的图层. 该层接收一个相同shape列表张量,并返回它们的和,shape不变. Example import keras input1 = keras.layers.Input(shape=(16,)) x1 = keras.layers.Dense(8, activation='relu')(input1) input2 = keras.la
-
Keras实现将两个模型连接到一起
神经网络玩得越久就越会尝试一些网络结构上的大改动. 先说意图 有两个模型:模型A和模型B.模型A的输出可以连接B的输入.将两个小模型连接成一个大模型,A-B,既可以同时训练又可以分离训练. 流行的算法里经常有这么关系的两个模型,对GAN来说,生成器和判别器就是这样子:对VAE来说,编码器和解码器就是这样子:对目标检测网络来说,backbone和整体也是可以拆分的.所以,应用范围还是挺广的. 实现方法 首先说明,我的实现方法不一定是最佳方法.也是实在没有借鉴到比较好的方法,所以才自己手动写了一个.
-
关于keras.layers.Conv1D的kernel_size参数使用介绍
今天在用keras添加卷积层的时候,发现了kernel_size这个参数不知怎么理解,keras中文文档是这样描述的: kernel_size: 一个整数,或者单个整数表示的元组或列表, 指明 1D 卷积窗口的长度. 又经过多方查找,大体理解如下: 因为是添加一维卷积层Conv1D(),一维卷积一般会处理时序数据,所以,卷积核的宽度为1,而kernel_size就是卷积核的长度了,这样的意思就是这个卷积核是一个长方形的卷积核. 补充知识:tf.layers.conv1d函数解析(一维卷积) 一维
-
keras自定义回调函数查看训练的loss和accuracy方式
前言: keras是一个十分便捷的开发框架,为了更好的追踪网络训练过程中的损失函数loss和准确率accuracy,我们有几种处理方式,第一种是直接通过 history=model.fit(),来返回一个history对象,通过这个对象可以访问到训练过程训练集的loss和accuracy以及验证集的loss和accuracy. 第二种方式就是通过自定义一个回调函数Call backs,来实现这一功能,本文主要讲解第二种方式. 一.如何构建回调函数Callbacks 本文所针对的例子是卷积神经网络
-
keras小技巧——获取某一个网络层的输出方式
前言: keras默认提供了如何获取某一个层的某一个节点的输出,但是没有提供如何获取某一个层的输出的接口,所以有时候我们需要获取某一个层的输出,则需要自己编写代码,但是鉴于keras高层封装的特性,编写起来实际上很简单,本文提供两种常见的方法来实现,基于上一篇文章的模型和代码: keras自定义回调函数查看训练的loss和accuracy 一.模型加载以及各个层的信息查看 从前面的定义可知,参见上一篇文章,一共定义了8个网络层,定义如下: model.add(Convolution2D(filt
-
keras 获取某层输出 获取复用层的多次输出实例
官方文档很全面,搜索功能也很好.但是如果你想单独实现某个功能,根本无从搜寻.于是我写了这个笔记.从功能出发. 两个tensor经过一个layer实例会产生两个输出. a = Input(shape=(280, 256)) b = Input(shape=(280, 256)) lstm = LSTM(32) encoded_a = lstm(a) encoded_b = lstm(b) lstm.output 这个代码有错误,因为最后一行没有指定lstm这个layer实例的那个输出. >> A
-
pytorch 获取层权重,对特定层注入hook, 提取中间层输出的方法
如下所示: #获取模型权重 for k, v in model_2.state_dict().iteritems(): print("Layer {}".format(k)) print(v) #获取模型权重 for layer in model_2.modules(): if isinstance(layer, nn.Linear): print(layer.weight) #将一个模型权重载入另一个模型 model = VGG(make_layers(cfg['E']), **kw
-
Django路由层如何获取正确的url
目录 前言 Tips - django版本区别 路由匹配 无名分组&有名分组 无名分组 有名分组 小提示 反向解析 路由不涉及分组的反向解析 有名分组&无名分组的反向解析 路由分发 前言 客户端浏览器访问Django后端时通过网关和中间件之后会首先在路由层进行路由匹配,只有路由匹配成功之后才能执行对应的视图函数内的逻辑进行数据的处理,本文就来介绍路由层(以diango1.x版本为例)是如何进行路由匹配的? Tips - django版本区别 在django1.x版本和django2.x及更
-
php通过两层过滤获取留言内容的方法
本文实例讲述了php通过两层过滤获取留言内容的方法.分享给大家供大家参考,具体如下: //两层过滤,获取留言的内容 $str='<div id="read_111111" style="font-size:14px;line-height:150%;padding:10px;">测试文字1<div id="lwd_12223"><h6 class="quote"><span class
-
js实现文本框中输入文字页面中div层同步获取文本框内容的方法
本文实例讲述了js实现文本框中输入文字页面中div层同步获取文本框内容的方法.分享给大家供大家参考.具体实现方法如下: 复制代码 代码如下: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.o
-
layui 弹出层回调获取弹出层数据的例子
如下所示: // 弹出楼栋负责人信息页面 layer.open({ type: 2, title:'请选择楼栋负责人', maxmin: false, area: ['60%', '80%'], offset: '0px', content: '${ctx}/life/houserInsertion/headBuildingInfo?pkProject='+pkProject, btn: ['确定','关闭'], yes: function(index){ //当点击'确定'按钮的时候,获取弹出
-
Layer弹出层动态获取数据的方法
前一阵子做了一个简单的小项目,用到了Layer弹出层(弹出层的用法就不多加赘述了,官网上都有详细的介绍,这里附上网址http://layer.layui.com/),当时前后台合页面的时候就出现了一个问题,弹出层总是获取不到数据,不过后面还是和同学们一起解决了,希望能帮助到大家. 之前的代码: <a id="func11" onclick="func11();">点击查看</a> function func11() { console.log
-
Keras自定义实现带masking的meanpooling层方式
Keras确实是一大神器,代码可以写得非常简洁,但是最近在写LSTM和DeepFM的时候,遇到了一个问题:样本的长度不一样.对不定长序列的一种预处理方法是,首先对数据进行padding补0,然后引入keras的Masking层,它能自动对0值进行过滤. 问题在于keras的某些层不支持Masking层处理过的输入数据,例如Flatten.AveragePooling1D等等,而其中meanpooling是我需要的一个运算.例如LSTM对每一个序列的输出长度都等于该序列的长度,那么均值运算就只应该
-
解决Keras中Embedding层masking与Concatenate层不可调和的问题
问题描述 我在用Keras的Embedding层做nlp相关的实现时,发现了一个神奇的问题,先上代码: a = Input(shape=[15]) # None*15 b = Input(shape=[30]) # None*30 emb_a = Embedding(10, 5, mask_zero=True)(a) # None*15*5 emb_b = Embedding(20, 5, mask_zero=False)(b) # None*30*5 cat = Concatenate(axi
-
获取python运行输出的数据并解析存为dataFrame实例
在学习xg的 时候,想画学习曲线,但无奈没有没有这个 evals_result_ AttributeError: 'Booster' object has no attribute 'evals_result_' 因为不是用的分类器或者回归器,而且是使用的train而不是fit进行训练的,看过源码fit才有evals_result_这个,导致训练后没有这个,但是又想获取学习曲线,因此肯定还需要获取训练数据. 运行的结果 上面有数据,于是就想自己解析屏幕的数据试一下,屏幕可以看到有我们迭代过程的数
随机推荐
- jQuery自动切换/点击切换选项卡效果的小例子
- Python实现求两个csv文件交集的方法
- PHP实现的下载远程图片自定义函数分享
- Apache PHP MySql安装配置图文教程
- Android 实现监听的四种方法详解实例代码
- 学习使用Material Design控件(二)使用DrawerLayout实现侧滑菜单栏效果
- MySQL 开启慢查询日志的方法
- 总结PHP中数值计算的注意事项
- JS格式化数字金额用逗号隔开保留两位小数
- Bootstrap的fileinput插件实现多文件上传的方法
- asp仿php的一些函数分享
- Vestacp免费VPS主机控制面板的安装与使用教程
- 微信小程序实战之轮播图(3)
- union组合结果集时的order问题
- 使用JavaScriptCore实现OC和JS交互详解
- jQuery 页面 Mask实现代码
- JavaScript 值类型和引用类型的初次研究(推荐)
- 关于为何要选择xflash的对话
- Android ListView数据的分批显示功能
- vue实现通讯录功能