Python中内建模块collections如何使用

collections是Python内建的一个集合模块,提供了许多有用的集合类。

这里举几个例子:

namedtuple

我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

>>> p = (1, 2)

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

定义一个class又小题大做了,这时,namedtuple就派上了用场:

>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2

namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。

这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。

可以验证创建的Point对象是tuple的一种子类:

>>> isinstance(p, Point)
True
>>> isinstance(p, tuple)
True

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

# namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])

deque

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。

defaultdict

使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:

>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'

注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。

除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。

OrderedDict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict:

>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> od.keys() # 按照插入的Key的顺序返回
['z', 'y', 'x']

OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:

from collections import OrderedDict
class LastUpdatedOrderedDict(OrderedDict):
 def __init__(self, capacity):
  super(LastUpdatedOrderedDict, self).__init__()
  self._capacity = capacity
 def __setitem__(self, key, value):
  containsKey = 1 if key in self else 0
  if len(self) - containsKey >= self._capacity:
   last = self.popitem(last=False)
   print 'remove:', last
  if containsKey:
   del self[key]
   print 'set:', (key, value)
  else:
   print 'add:', (key, value)
  OrderedDict.__setitem__(self, key, value)

Counter

Counter是一个简单的计数器,例如,统计字符出现的个数:

>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
...  c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})

Counter实际上也是dict的一个子类,上面的结果可以看出,字符'g'、'm'、'r'各出现了两次,其他字符各出现了一次。

小结

collections模块提供了一些有用的集合类,可以根据需要选用。

知识点补充:

在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

1.namedtuple: 生成可以使用名字来访问元素内容的tuple

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

3.Counter: 计数器,主要用来计数

4.OrderedDict: 有序字典

5.defaultdict: 带有默认值的字典

以上就是Python中内建模块collections如何使用的详细内容,更多关于详解Python中的内建模块collections的资料请关注我们其它相关文章!

(0)

相关推荐

  • python内置模块collections知识点总结

    python内置模块collections介绍 collections是Python内建的一个集合模块,提供了许多有用的集合类. 1.namedtuple python提供了很多非常好用的基本类型,比如不可变类型tuple,我们可以轻松地用它来表示一个二元向量. >>> v = (2,3) 我们发现,虽然(2,3)表示出了一个向量的两个坐标,但是,如果没有额外说明,又很难直接看出这个元组是用来表示一个坐标的. 为此定义一个class又小题大做了,这时,namedtuple就派上用场了.

  • Python collections中的双向队列deque简单介绍详解

    前言 在python神书<Python+Cookbook>中有这么一段话:在队列两端插入或删除元素时间复杂度都是 O(1) ,而在列表的开头插入或删除元素的时间复杂度为 O(N). 于是就想验证下. 简单使用 基本代码 from collections import deque q = deque(maxlen=4)#有固定长度的双向队列 qq = deque() #无固定长度 print(dir(q))#看看有哪些可用方法或属性 结果: ['__add__', '__bool__', '__

  • Python中collections模块的基本使用教程

    前言 之前认识了python基本的数据类型和数据结构,现在认识一个高级的:Collections,一个模块主要用来干嘛,有哪些类可以使用,看__init__.py就知道 '''This module implements specialized container datatypes providing alternatives to Python's general purpose built-in containers, dict, list, set, and tuple. * named

  • 浅析python内置模块collections

    collections是Python内建的一个集合模块,提供了许多有用的集合类. 1.namedtuple python提供了很多非常好用的基本类型,比如不可变类型tuple,我们可以轻松地用它来表示一个二元向量. >>> v = (2,3) 我们发现,虽然(2,3)表示出了一个向量的两个坐标,但是,如果没有额外说明,又很难直接看出这个元组是用来表示一个坐标的. 为此定义一个class又小题大做了,这时,namedtuple就派上用场了. >>> from collec

  • Python collections模块使用方法详解

    一.collections模块 1.函数namedtuple (1)作用:tuple类型,是一个可命名的tuple (2)格式:collections(列表名称,列表) (3)​返回值:一个含有列表的类 (4)例子​: import collections # help(collections.namedtuple) Point = collections.namedtuple("Point",['x','y']) p = Point(15,45) print(p.x+p.y) pri

  • Python中内建模块collections如何使用

    collections是Python内建的一个集合模块,提供了许多有用的集合类. 这里举几个例子: namedtuple 我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成: >>> p = (1, 2) 但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的. 定义一个class又小题大做了,这时,namedtuple就派上了用场: >>> from collections import namedtuple >>>

  • 使用Python的内建模块collections的教程

    collections是Python内建的一个集合模块,提供了许多有用的集合类. namedtuple 我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成: >>> p = (1, 2) 但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的. 定义一个class又小题大做了,这时,namedtuple就派上了用场: >>> from collections import namedtuple >>> Point = n

  • 了解一下python内建模块collections

    在使用Python的过程中,一定是离不开数据结构的, 也就是List-列表,Tuples-元组,Dictionaries-字典. 那实际应用中我们更多的还是要去操作这些结构里的数据.比如,在列表后面添加元素,那么就会用到append() 方法. 那除了这些本身的操作方法之外,还有一个Python内建模块--collections,也提供了不少使用的方法,今天来捋一下. 一.Counter 这是一个计数器,我们可以用来方便的统计出一些元素出现的次数,比如String.List.Tuples等等.

  • 介绍Python中内置的itertools模块

    Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数. 首先,我们看看itertools提供的几个"无限"迭代器: >>> import itertools >>> natuals = itertools.count(1) >>> for n in natuals: ... print n ... 1 2 3 ... 因为count()会创建一个无限的迭代器,所以上述代码会打印出自然数序列,根本停不下来,只

  • Python内建模块struct实例详解

    本文研究的主要是Python内建模块struct的相关内容,具体如下. Python中变量的类型只有列表.元祖.字典.集合等高级抽象类型,并没有像c中定义了位.字节.整型等底层初级类型.因为Python本来就是高级解释性语言,运行的时候都是经过翻译后再在底层运行.如何打通Python和其他语言之间的类型定义障碍,Python的内建模块struct完全解决了所有问题. 知识介绍: 在struct模块中最最常用的三个: (1)struct.pack:用于将Python的值根据格式符,转换为字符串(因

  • python中内置库os与sys模块的详细介绍

    目录 os包 sys模块 os包 想要使用os包一样要先导入:import os os包下可以直接调用的函数 下面介绍一下os包中可以直接调用的函数: 例子: 例子: 例子: 注意:os.path.exists()参数可以传绝对路径,也可以传相对路径: 已知一个文件的路径,可以用spilt切割出这个文件名: sys模块 sys模块常用于操作当前的操作系统/环境 sys中常用的函数: 例子: 关于argv我们知道,他可以从程序外部获取参数,我们让他从终端传入参数给程序. 举一个详细的例子介绍: 可

  • 对python中的logger模块全面讲解

    logging模块介绍 Python的logging模块提供了通用的日志系统,熟练使用logging模块可以方便开发者开发第三方模块或者是自己的Python应用.同样这个模块提供不同的日志级别,并可以采用不同的方式记录日志,比如文件,HTTP.GET/POST,SMTP,Socket等,甚至可以自己实现具体的日志记录方式.下文我将主要介绍如何使用文件方式记录log. logging模块包括logger,handler,filter,formatter这四个基本概念. logging模块与log4

  • Python中logger日志模块详解

    1 logging模块简介 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等:相比print,具备如下优点: 可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息: print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据:logging则可以由开发者决定将信息输出到什么地方,以及怎么输出: Logger从来不直接实例化,经常通过logging模块级方法(Modu

  • Python 中的 Counter 模块及使用详解(搞定重复计数)

    文章目录 参考描述Counter 模块Counter() 类Counter() 对象字典有序性KeyError魔术方法 \_\_missing\_\_ update() 方法 Counter 对象的常用方法most_common()elements()total()subtract() Counter 对象间的运算加法运算减法运算并集运算交集运算单目运算 Counter 对象间的比较>== 参考 项目 描述 Python 标准库 DougHellmann 著 / 刘炽 等 译 搜索引擎 Bing

  • 使用Python中的tkinter模块作图的方法

    python简述: Python是一种解释型.面向对象.动态数据类型的高级程序设计语言.自从20世纪90年代初Python语言诞生至今,它逐渐被广泛应用于处理系统管理任务和Web编程.Python[1]已经成为最受欢迎的程序设计语言之一.2011年1月,它被TIOBE编程语言排行榜评为2010年度语言.自从2004年以后,python的使用率是呈线性增长. tkinter模块介绍 tkinter模块("Tk 接口")是Python的标准Tk GUI工具包的接口.Tk和Tkinter可以

随机推荐