使用tensorflow根据输入更改tensor shape

涉及随机数以及类RNN的网络构建常常需要根据输入shape,决定中间变量的shape或步长。

tf.shape函数不同于tensor.shape.as_list()函数,后者返回的是常值list,而前者返回的是tensor。

使用tf.shape函数可以使得中间变量的tensor形状随输入变化,不需要在构建Graph的时候指定。但对于tf.Variable,因为需要提前分配固定空间,其shape无法通过上诉方法设定。

实例代码如下:

a = tf.placeholder(tf.float32,[None,])
b = tf.random_normal(tf.concat([tf.shape(a),[2,]],axis=0))

补充知识:pytorch中model=model.to(device)用法

这代表将模型加载到指定设备上。

其中,device=torch.device("cpu")代表的使用cpu,而device=torch.device("cuda")则代表的使用GPU。

当我们指定了设备之后,就需要将模型加载到相应设备中,此时需要使用model=model.to(device),将模型加载到相应的设备中。

将由GPU保存的模型加载到CPU上。

将torch.load()函数中的map_location参数设置为torch.device('cpu')

device = torch.device('cpu')
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location=device))

将由GPU保存的模型加载到GPU上。确保对输入的tensors调用input = input.to(device)方法。

device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.to(device)

将由CPU保存的模型加载到GPU上。确保对输入的tensors调用input = input.to(device)方法。map_location是将模型加载到GPU上,model.to(torch.device('cuda'))是将模型参数加载为CUDA的tensor。最后保证使用.to(torch.device('cuda'))方法将需要使用的参数放入CUDA。

device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location="cuda:0")) # Choose whatever GPU device number you want
model.to(device)

以上这篇使用tensorflow根据输入更改tensor shape就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch 改变tensor尺寸的实现

    改变Tensor尺寸的操作 1.tensor.view tensor.view方法,可以调整tensor的形状,但必须保证调整前后元素总数一致.view不会改变自身数据,返回的新的tensor与源tensor共享内存,即更改其中一个,另外一个也会跟着改变. 例: In: import torch as t a = t.arange(0, 6) a.view(2, 3) Out:tensor([[0, 1, 2], [3, 4, 5]]) In: b = a.view(-1, 3)#当某一维为-1

  • TensorFlow设置日志级别的几种方式小结

    TensorFlow中的log共有INFO.WARN.ERROR.FATAL 4种级别.有以下几种设置方式. 1. 通过设置环境变量控制log级别 可以通过环境变量TF_CPP_MIN_LOG_LEVEL进行设置,TF_CPP_MIN_LOG_LEVEL的不同值的含义分别如下: Level Level for Humans Level Description 0 DEBUG all messages are logged (Default) 1 INFO INFO messages are no

  • TensorFlow实现自定义Op方式

    『写在前面』 以CTC Beam search decoder为例,简单整理一下TensorFlow实现自定义Op的操作流程. 基本的流程 1. 定义Op接口 #include "tensorflow/core/framework/op.h" REGISTER_OP("Custom") .Input("custom_input: int32") .Output("custom_output: int32"); 2. 为Op实现

  • tensorflow: 查看 tensor详细数值方法

    问题 tensor详细数值 不能直接print打印: import tensorflow as tf x = tf.constant(1) print x 输出: Tensor("Const:0", shape=(), dtype=int32) 原因: print只能打印输出shape的信息,而要打印输出tensor的值,需要借助 tf.Session,tf.InteractiveSession. 因为我们在建立graph的时候,只建立 tensor 的 结构形状信息 ,并没有 执行

  • 浅谈tensorflow中张量的提取值和赋值

    tf.gather和gather_nd从params中收集数值,tf.scatter_nd 和 tf.scatter_nd_update用updates更新某一张量.严格上说,tf.gather_nd和tf.scatter_nd_update互为逆操作. 已知数值的位置,从张量中提取数值:tf.gather, tf.gather_nd tf.gather indices每个元素(标量)是params某个axis的索引,tf.gather_nd 中indices最后一个阶对应于索引值. tf.ga

  • 使用tensorflow根据输入更改tensor shape

    涉及随机数以及类RNN的网络构建常常需要根据输入shape,决定中间变量的shape或步长. tf.shape函数不同于tensor.shape.as_list()函数,后者返回的是常值list,而前者返回的是tensor. 使用tf.shape函数可以使得中间变量的tensor形状随输入变化,不需要在构建Graph的时候指定.但对于tf.Variable,因为需要提前分配固定空间,其shape无法通过上诉方法设定. 实例代码如下: a = tf.placeholder(tf.float32,[

  • TensorFlow查看输入节点和输出节点名称方式

    TensorFlow 定义输入节点名称input_name: with tf.name_scope('input'): bottleneck_input = tf.placeholder_with_default( bottleneck_tensor, shape=[batch_size, bottleneck_tensor_size], name='Mul') TensorFlow查看pb数据库里面的输入节点和输出节点: import tensorflow as tf import os mo

  • keras 获取某层的输入/输出 tensor 尺寸操作

    获取单输入尺寸,该层只被使用了一次. import keras from keras.layers import Input, LSTM, Dense, Conv2D from keras.models import Model a = Input(shape=(32, 32, 3)) b = Input(shape=(64, 64, 3)) conv = Conv2D(16, (3, 3), padding='same') conved_a = conv(a) # 到目前为止只有一个输入,以下

  • 基于tf.shape(tensor)和tensor.shape()的区别说明

    #tf.shape(tensor)和tensor.shape()的区别 a=tf.zeros([4,5,4,5,6]) print(type(a.shape)) print(a.shape.ndims)#多少个维度 print(a.shape.as_list())#返回列表 print(type(tf.shape(a))) print(type(tf.shape(a)[0])) b=a.shape.as_list() c=tf.shape(a) b[1]=tf.shape(a)[1] print

  • TensorFlow数据输入的方法示例

    读取数据(Reading data) TensorFlow输入数据的方式有四种: tf.data API:可以很容易的构建一个复杂的输入通道(pipeline)(首选数据输入方式)(Eager模式必须使用该API来构建输入通道) Feeding:使用Python代码提供数据,然后将数据feeding到计算图中. QueueRunner:基于队列的输入通道(在计算图计算前从队列中读取数据) Preloaded data:用一个constant常量将数据集加载到计算图中(主要用于小数据集) 1. t

  • python生成tensorflow输入输出的图像格式的方法

    TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进tensorflow:也可以通过自带函数(tf.read)读取,当图像文件过多时,一般使用pipeline通过队列的方法进行读取.下面我们介绍两种生成tensorflow的图像格式的方法,供给tensorflow的graph的输入与输出. import cv2 import numpy as np import h5py height = 460 width = 345 w

  • Tensorflow实现卷积神经网络用于人脸关键点识别

    今年来人工智能的概念越来越火,AlphaGo以4:1击败李世石更是起到推波助澜的作用.作为一个开挖掘机的菜鸟,深深感到不学习一下deep learning早晚要被淘汰. 既然要开始学,当然是搭一个深度神经网络跑几个数据集感受一下作为入门最直观了.自己写代码实现的话debug的过程和运行效率都会很忧伤,我也不知道怎么调用GPU- 所以还是站在巨人的肩膀上,用现成的框架吧.粗略了解一下,现在比较知名的有caffe.mxnet.tensorflow等等.选哪个呢?对我来说选择的标准就两个,第一要容易安

  • TensorFlow实现卷积神经网络CNN

    一.卷积神经网络CNN简介 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因

  • Tensorflow的可视化工具Tensorboard的初步使用详解

    当使用Tensorflow训练大量深层的神经网络时,我们希望去跟踪神经网络的整个训练过程中的信息,比如迭代的过程中每一层参数是如何变化与分布的,比如每次循环参数更新后模型在测试集与训练集上的准确率是如何的,比如损失值的变化情况,等等.如果能在训练的过程中将一些信息加以记录并可视化得表现出来,是不是对我们探索模型有更深的帮助与理解呢? Tensorflow官方推出了可视化工具Tensorboard,可以帮助我们实现以上功能,它可以将模型训练过程中的各种数据汇总起来存在自定义的路径与日志文件中,然后

  • 初探TensorFLow从文件读取图片的四种方式

    本文记录一下TensorFLow的几种图片读取方法,官方文档有较为全面的介绍. 1.使用gfile读图片,decode输出是Tensor,eval后是ndarray import matplotlib.pyplot as plt import tensorflow as tf import numpy as np print(tf.__version__) image_raw = tf.gfile.FastGFile('test/a.jpg','rb').read() #bytes img =

随机推荐