详解Linux进程间通信——使用信号量

一、什么是信号量

为了防止出现因多个程序同时访问一个共享资源而引发的一系列问题,我们需要一种方法,它可以通过生成并使用令牌来授权,在任一时刻只能有一个执行线程访问代码的临界区域。临界区域是指执行数据更新的代码需要独占式地执行。而信号量就可以提供这样的一种访问机制,让一个临界区同一时间只有一个线程在访问它,也就是说信号量是用来调协进程对共享资源的访问的。

信号量是一个特殊的变量,程序对其访问都是原子操作,且只允许对它进行等待(即P(信号变量))和发送(即V(信号变量))信息操作。最简单的信号量是只能取0和1的变量,这也是信号量最常见的一种形式,叫做二进制信号量。而可以取多个正整数的信号量被称为通用信号量。这里主要讨论二进制信号量。

二、信号量的工作原理

由于信号量只能进行两种操作等待和发送信号,即P(sv)和V(sv),他们的行为是这样的:

P(sv):如果sv的值大于零,就给它减1;如果它的值为零,就挂起该进程的执行

V(sv):如果有其他进程因等待sv而被挂起,就让它恢复运行,如果没有进程因等待sv而挂起,就给它加1.

举个例子,就是两个进程共享信号量sv,一旦其中一个进程执行了P(sv)操作,它将得到信号量,并可以进入临界区,使sv减1。而第二个进程将被阻止进入临界区,因为当它试图执行P(sv)时,sv为0,它会被挂起以等待第一个进程离开临界区域并执行V(sv)释放信号量,这时第二个进程就可以恢复执行。

三、Linux的信号量机制

Linux提供了一组精心设计的信号量接口来对信号进行操作,它们不只是针对二进制信号量,下面将会对这些函数进行介绍,但请注意,这些函数都是用来对成组的信号量值进行操作的。它们声明在头文件sys/sem.h中。

1、semget函数

它的作用是创建一个新信号量或取得一个已有信号量,原型为:

int semget(key_t key, int num_sems, int sem_flags); 

第一个参数key是整数值(唯一非零),不相关的进程可以通过它访问一个信号量,它代表程序可能要使用的某个资源,程序对所有信号量的访问都是间接的,程序先通过调用semget函数并提供一个键,再由系统生成一个相应的信号标识符(semget函数的返回值),只有semget函数才直接使用信号量键,所有其他的信号量函数使用由semget函数返回的信号量标识符。如果多个程序使用相同的key值,key将负责协调工作。

第二个参数num_sems指定需要的信号量数目,它的值几乎总是1。

第三个参数sem_flags是一组标志,当想要当信号量不存在时创建一个新的信号量,可以和值IPC_CREAT做按位或操作。设置了IPC_CREAT标志后,即使给出的键是一个已有信号量的键,也不会产生错误。而IPC_CREAT | IPC_EXCL则可以创建一个新的,唯一的信号量,如果信号量已存在,返回一个错误。

semget函数成功返回一个相应信号标识符(非零),失败返回-1.

2、semop函数

它的作用是改变信号量的值,原型为:

int semop(int sem_id, struct sembuf *sem_opa, size_t num_sem_ops); 

sem_id是由semget返回的信号量标识符,sembuf结构的定义如下:

struct sembuf{
  short sem_num;//除非使用一组信号量,否则它为0
  short sem_op;//信号量在一次操作中需要改变的数据,通常是两个数,一个是-1,即P(等待)操作,
          //一个是+1,即V(发送信号)操作。
  short sem_flg;//通常为SEM_UNDO,使操作系统跟踪信号,
          //并在进程没有释放该信号量而终止时,操作系统释放信号量
};

3、semctl函数

该函数用来直接控制信号量信息,它的原型为:

int semctl(int sem_id, int sem_num, int command, ...); 

如果有第四个参数,它通常是一个union semum结构,定义如下:

union semun{
  int val;
  struct semid_ds *buf;
  unsigned short *arry;
}; 

前两个参数与前面一个函数中的一样,command通常是下面两个值中的其中一个

  • SETVAL:用来把信号量初始化为一个已知的值。p 这个值通过union semun中的val成员设置,其作用是在信号量第一次使用前对它进行设置。
  • IPC_RMID:用于删除一个已经无需继续使用的信号量标识符。

四、进程使用信号量通信

下面使用一个例子来说明进程间如何使用信号量来进行通信,这个例子是两个相同的程序同时向屏幕输出数据,我们可以看到如何使用信号量来使两个进程协调工作,使同一时间只有一个进程可以向屏幕输出数据。注意,如果程序是第一次被调用(为了区分,第一次调用程序时带一个要输出到屏幕中的字符作为一个参数),则需要调用set_semvalue函数初始化信号并将message字符设置为传递给程序的参数的第一个字符,同时第一个启动的进程还负责信号量的删除工作。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。

在main函数中调用semget来创建一个信号量,该函数将返回一个信号量标识符,保存于全局变量sem_id中,然后以后的函数就使用这个标识符来访问信号量。

源文件为seml.c,代码如下:

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/sem.h> 

union semun
{
  int val;
  struct semid_ds *buf;
  unsigned short *arry;
}; 

static int sem_id = 0; 

static int set_semvalue();
static void del_semvalue();
static int semaphore_p();
static int semaphore_v(); 

int main(int argc, char *argv[])
{
  char message = 'X';
  int i = 0; 

  //创建信号量
  sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT); 

  if(argc > 1)
  {
    //程序第一次被调用,初始化信号量
    if(!set_semvalue())
    {
      fprintf(stderr, "Failed to initialize semaphore\n");
      exit(EXIT_FAILURE);
    }
    //设置要输出到屏幕中的信息,即其参数的第一个字符
    message = argv[1][0];
    sleep(2);
  }
  for(i = 0; i < 10; ++i)
  {
    //进入临界区
    if(!semaphore_p())
      exit(EXIT_FAILURE);
    //向屏幕中输出数据
    printf("%c", message);
    //清理缓冲区,然后休眠随机时间
    fflush(stdout);
    sleep(rand() % 3);
    //离开临界区前再一次向屏幕输出数据
    printf("%c", message);
    fflush(stdout);
    //离开临界区,休眠随机时间后继续循环
    if(!semaphore_v())
      exit(EXIT_FAILURE);
    sleep(rand() % 2);
  } 

  sleep(10);
  printf("\n%d - finished\n", getpid()); 

  if(argc > 1)
  {
    //如果程序是第一次被调用,则在退出前删除信号量
    sleep(3);
    del_semvalue();
  }
  exit(EXIT_SUCCESS);
} 

static int set_semvalue()
{
  //用于初始化信号量,在使用信号量前必须这样做
  union semun sem_union; 

  sem_union.val = 1;
  if(semctl(sem_id, 0, SETVAL, sem_union) == -1)
    return 0;
  return 1;
} 

static void del_semvalue()
{
  //删除信号量
  union semun sem_union; 

  if(semctl(sem_id, 0, IPC_RMID, sem_union) == -1)
    fprintf(stderr, "Failed to delete semaphore\n");
} 

static int semaphore_p()
{
  //对信号量做减1操作,即等待P(sv)
  struct sembuf sem_b;
  sem_b.sem_num = 0;
  sem_b.sem_op = -1;//P()
  sem_b.sem_flg = SEM_UNDO;
  if(semop(sem_id, &sem_b, 1) == -1)
  {
    fprintf(stderr, "semaphore_p failed\n");
    return 0;
  }
  return 1;
} 

static int semaphore_v()
{
  //这是一个释放操作,它使信号量变为可用,即发送信号V(sv)
  struct sembuf sem_b;
  sem_b.sem_num = 0;
  sem_b.sem_op = 1;//V()
  sem_b.sem_flg = SEM_UNDO;
  if(semop(sem_id, &sem_b, 1) == -1)
  {
    fprintf(stderr, "semaphore_v failed\n");
    return 0;
  }
  return 1;
}

运行结果如下:

注:这个程序的临界区为main函数for循环不的semaphore_p和semaphore_v函数中间的代码。

例子分析 :同时运行一个程序的两个实例,注意第一次运行时,要加上一个字符作为参数,例如本例中的字符‘O',它用于区分是否为第一次调用,同时这个字符输出到屏幕中。因为每个程序都在其进入临界区后和离开临界区前打印一个字符,所以每个字符都应该成对出现,正如你看到的上图的输出那样。在main函数中循环中我们可以看到,每次进程要访问stdout(标准输出),即要输出字符时,每次都要检查信号量是否可用(即stdout有没有正在被其他进程使用)。

所以,当一个进程A在调用函数semaphore_p进入了临界区,输出字符后,调用sleep时,另一个进程B可能想访问stdout,但是信号量的P请求操作失败,只能挂起自己的执行,当进程A调用函数semaphore_v离开了临界区,进程B马上被恢复执行。然后进程A和进程B就这样一直循环了10次。

五、对比例子——进程间的资源竞争

看了上面的例子,你可能还不是很明白,不过没关系,下面我就以另一个例子来说明一下,它实现的功能与前面的例子一样,运行方式也一样,都是两个相同的进程,同时向stdout中输出字符,只是没有使用信号量,两个进程在互相竞争stdout。它的代码非常简单,文件名为normalprint.c,代码如下:

#include <stdio.h>
#include <stdlib.h> 

int main(int argc, char *argv[])
{
  char message = 'X';
  int i = 0;
  if(argc > 1)
    message = argv[1][0];
  for(i = 0; i < 10; ++i)
  {
    printf("%c", message);
    fflush(stdout);
    sleep(rand() % 3);
    printf("%c", message);
    fflush(stdout);
    sleep(rand() % 2);
  }
  sleep(10);
  printf("\n%d - finished\n", getpid());
  exit(EXIT_SUCCESS);
}

运行结果如下:

例子分析:

从上面的输出结果,我们可以看到字符‘X'和‘O'并不像前面的例子那样,总是成对出现,因为当第一个进程A输出了字符后,调用sleep休眠时,另一个进程B立即输出并休眠,而进程A醒来时,再继续执行输出,同样的进程B也是如此。所以输出的字符就是不成对的出现。这两个进程在竞争stdout这一共同的资源。通过两个例子的对比,我想信号量的意义和使用应该比较清楚了。

六、信号量的总结

信号量是一个特殊的变量,程序对其访问都是原子操作,且只允许对它进行等待(即P(信号变量))和发送(即V(信号变量))信息操作。我们通常通过信号来解决多个进程对同一资源的访问竞争的问题,使在任一时刻只能有一个执行线程访问代码的临界区域,也可以说它是协调进程间的对同一资源的访问权,也就是用于同步进程的。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 浅谈Linux进程间通信方式及优缺点

    1)管道 管道分为有名管道和无名管道 无名管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用.进程的亲缘关系一般指的是父子关系.无明管道一般用于两个不同进程之间的通信.当一个进程创建了一个管道,并调用fork创建自己的一个子进程后,父进程关闭读管道端,子进程关闭写管道端,这样提供了两个进程之间数据流动的一种方式. 有名管道也是一种半双工的通信方式,但是它允许无亲缘关系进程间的通信. 2)信号量 信号量是一个计数器,可以用来控制多个线程对共享资源的访问.,它不是用于交

  • Linux进程间通信——使用流套接字

    前面说到的进程间的通信,所通信的进程都是在同一台计算机上的,而使用socket进行通信的进程可以是同一台计算机的进程,也是可以是通过网络连接起来的不同计算机上的进程.通常我们使用socket进行网络编程,这里将会简单地讲述如何使用socket进行简单的网络编程. 一.什么是socket socket,即套接字是一种通信机制,凭借这种机制,客户/服务器(即要进行通信的进程)系统的开发工作既可以在本地单机上进行,也可以跨网络进行.也就是说它可以让不在同一台计算机但通过网络连接计算机上的进程进行通信.

  • 关于进程间通信的Linux小程序

    利用工作之余为小伙伴写了份作业,关于进程间通信的.题目如下: "父进程从键盘上接受1000个数据,对其求和sum1,子进程对这1000个数平方和sum2,结果传给父进程,父进程将sum1+sum2后,打印结果." 要求:用大小为10的共享区传递1000个数据:子进程用消息机制将sum2传给父进程. 主要利用共享内存实现进程间通信,使用管道实现进程间竞争关系,FreeBSD下测试通过.代码如下:时间有限,有可能有些不足,希望高手给予指点. #include <stdio.h>

  • Linux消息队列实现进程间通信实例详解

    Linux消息队列实现进程间通信实例详解 一.什么是消息队列 消息队列提供了一种从一个进程向另一个进程发送一个数据块的方法.  每个数据块都被认为含有一个类型,接收进程可以独立地接收含有不同类型的数据结构.我们可以通过发送消息来避免命名管道的同步和阻塞问题.但是消息队列与命名管道一样,每个数据块都有一个最大长度的限制. Linux用宏MSGMAX和MSGMNB来限制一条消息的最大长度和一个队列的最大长度. 二.在Linux中使用消息队列 Linux提供了一系列消息队列的函数接口来让我们方便地使用

  • PHP下操作Linux消息队列完成进程间通信的方法

    关于Linux系统进程通信的概念及实现可查看:http://www.ibm.com/developerworks/cn/linux/l-ipc/ 关于Linux系统消息队列的概念及实现可查看:http://www.ibm.com/developerworks/cn/linux/l-ipc/part4/ PHP的sysvmsg模块是对Linux系统支持的System V IPC中的System V消息队列函数族的封装.我们需要利用sysvmsg模块提供的函数来进进程间通信.先来看一段示例代码_1:

  • 详解Linux进程间通信——使用信号量

    一.什么是信号量 为了防止出现因多个程序同时访问一个共享资源而引发的一系列问题,我们需要一种方法,它可以通过生成并使用令牌来授权,在任一时刻只能有一个执行线程访问代码的临界区域.临界区域是指执行数据更新的代码需要独占式地执行.而信号量就可以提供这样的一种访问机制,让一个临界区同一时间只有一个线程在访问它,也就是说信号量是用来调协进程对共享资源的访问的. 信号量是一个特殊的变量,程序对其访问都是原子操作,且只允许对它进行等待(即P(信号变量))和发送(即V(信号变量))信息操作.最简单的信号量是只

  • 详解Linux进程间通信——使用共享内存

    一.什么是共享内存 顾名思义,共享内存就是允许两个不相关的进程访问同一个逻辑内存.共享内存是在两个正在运行的进程之间共享和传递数据的一种非常有效的方式.不同进程之间共享的内存通常安排为同一段物理内存.进程可以将同一段共享内存连接到它们自己的地址空间中,所有进程都可以访问共享内存中的地址,就好像它们是由用C语言函数malloc分配的内存一样.而如果某个进程向共享内存写入数据,所做的改动将立即影响到可以访问同一段共享内存的任何其他进程. 特别提醒:共享内存并未提供同步机制,也就是说,在第一个进程结束

  • 详解Linux多线程使用信号量同步

    信号量.同步这些名词在进程间通信时就已经说过,在这里它们的意思是相同的,只不过是同步的对象不同而已.但是下面介绍的信号量的接口是用于线程的信号量,注意不要跟用于进程间通信的信号量混淆. 一.什么是信号量 线程的信号量与进程间通信中使用的信号量的概念是一样,它是一种特殊的变量,它可以被增加或减少,但对其的关键访问被保证是原子操作.如果一个程序中有多个线程试图改变一个信号量的值,系统将保证所有的操作都将依次进行. 而只有0和1两种取值的信号量叫做二进制信号量,在这里将重点介绍.而信号量一般常用于保护

  • 详解Linux 主机网络接入配置

    详解Linux 主机网络接入配置 前言: 网络配置是我们在安装好操作系统之后,需要解决的第一步.现时代没有接入网络的主机已然等同于一堆废铁.在网络配置的过程中,通常我们需要配置本机IP地址,缺省网关,DNS,主机名等等.本文主要描述在Linux环境下,主要以传统命令行方式讲解如何将主机接入网络.对于网路配置的新命令如ip,nmcli等等在以后的文章中描述. 一.网络配置概述 主机接入互联网前提:遵循TCP/IP协议栈 配置主机接入TCP/IP网络需要配置的内容:   IP/Netmask   路

  • 详解Linux命令中的正则表达式

    命令中的正则表达式 如果要在命令输出或文本中筛选内容时使用模糊查找,就需要使用正则表达式.正则表达式是一套由多个元字符组成的模糊查找模式,使用正则表达式可以快速查找和定位文本中指定的内容. 1.单字符匹配符.  正则表达式主要由一些元字符和匹配模式组成 单字符匹配符可以匹配任意单个字符,这个字符的功能和文件名匹配符中的?功能相同 使用正则表达式查找文本,首先需要使用元字符组成一个查找模式 (1)使用查找模式时,通常将其放入两个斜杠//中,然后再放入命令,例如要在一个文本中查找匹配模式/.i...

  • 详解Linux使用shell+expect远程登录主机

    详解Linux使用shell+expect远程登录主机 最近使用Ubuntu系统想远程登录自己的vps主机,但是感觉自带的远程登录软件不太好使.于是乎想着怎么使用shell脚本来登录,于是Google之后整理了一下,记录一下,方便以后用到. 1.准备工作:安装expect for Ubuntu sudo apt-get update sudo apt-get install expect for Centos yum install expect 2.新建脚本粘贴以下内容 #!/usr/bin/

  • 详解Linux命令iostat

    Linux系统出现了性能问题,一般我们可以通过top.iostat.free.vmstat等命令来查看初步定位问题.在一个以前看到系统监控工具,总在想那些监控工具的代理,如何收集系统性能信息,io性能,cpu使用,带宽使用等信息,偶然发现,不同系统均提供有性能分析工具的,代理可通过这些命令获取系统性能信息,个人猜测,不知道具体是不是这样的.其中iostat可以给我们提供丰富的IO状态数据,下边就来看一下iostat如何使用,命令能够输出那些信息. 简述 Linux系统中通过iostat我们能查看

  • 详解Linux 下开发微信小程序安装开发工具

    详解Linux 下开发微信小程序安装开发工具 1. git clone https://github.com/yuan1994/wechat_web_devtools 然后创建一个文件夹 mkdir /opt/tencent/ 移动文件 mv ./wechat_web_devtools /opt/tencent 修改用户组 chown -R root:root /opt/tencent/wechat_web_devtools 启动测试工具 /opt/tencent/wechat_web_devt

  • 详解 linux mysqldump 导出数据库、数据、表结构

    详解 linux mysqldump 导出数据库.数据.表结构 导出完整的数据库备份: mysqldump -h127.0.0.1 -P3306 -uroot -ppassword --add-locks -q dbname > dbname.sql 说明:--add-locks:导出过程中锁定表,完成后回解锁.-q:不缓冲查询,直接导出至标准输出 导出完整的数据库表结构 : mysqldump -h127.0.0.1 -P3306 -uroot -ppassword --add-locks -

  • 详解Linux上svn命令行批量操作

    详解Linux上svn命令行批量操作 虽然说git很好,大多数时候我也是使用git,但是有时候因为一些原因,不得不使用svn,而在linux上使用svn是没有像windows上的tortoisesvn的软件的(网上有说有类似的,但是折腾了很久仍然没有成功),所以直接来命令行吧. 我们直接安装svn就好,然后文件修改之后使用命令 svn status 查看文件的跟踪信息,这里会使用一些代号,对应的大概是 " " 无修改 "A" 新增 "C" 冲突

随机推荐