给Python初学者的一些编程技巧

交换变量
 

x = 6
y = 5

x, y = y, x

print x
>>> 5
print y
>>> 6

if 语句在行内

print "Hello" if True else "World"
>>> Hello

连接

下面的最后一种方式在绑定两个不同类型的对象时显得很cool。

nfc = ["Packers", "49ers"]
afc = ["Ravens", "Patriots"]
print nfc + afc
>>> ['Packers', '49ers', 'Ravens', 'Patriots']

print str(1) + " world"
>>> 1 world

print `1` + " world"
>>> 1 world

print 1, "world"
>>> 1 world
print nfc, 1
>>> ['Packers', '49ers'] 1

数字技巧

#除后向下取整
print 5.0//2
>>> 2
# 2的5次方
print 2**5
>> 32

注意浮点数的除法

print .3/.1
>>> 2.9999999999999996
print .3//.1
>>> 2.0

数值比较

这是我见过诸多语言中很少有的如此棒的简便法

x = 2
if 3 > x > 1:
 print x
>>> 2
if 1 < x > 0:
 print x
>>> 2

同时迭代两个列表

nfc = ["Packers", "49ers"]
afc = ["Ravens", "Patriots"]
for teama, teamb in zip(nfc, afc):
  print teama + " vs. " + teamb
>>> Packers vs. Ravens
>>> 49ers vs. Patriots

带索引的列表迭代

teams = ["Packers", "49ers", "Ravens", "Patriots"]
for index, team in enumerate(teams):
 print index, team
>>> 0 Packers
>>> 1 49ers
>>> 2 Ravens
>>> 3 Patriots

列表推导式

已知一个列表,我们可以刷选出偶数列表方法:

numbers = [1,2,3,4,5,6]
even = []
for number in numbers:
 if number%2 == 0:
  even.append(number)

转变成如下:

numbers = [1,2,3,4,5,6]
even = [number for number in numbers if number%2 == 0]

是不是很牛呢,哈哈。

字典推导

和列表推导类似,字典可以做同样的工作:

teams = ["Packers", "49ers", "Ravens", "Patriots"]
print {key: value for value, key in enumerate(teams)}
>>> {'49ers': 1, 'Ravens': 2, 'Patriots': 3, 'Packers': 0}

初始化列表的值

items = [0]*3
print items
>>> [0,0,0]

列表转换为字符串

teams = ["Packers", "49ers", "Ravens", "Patriots"]
print ", ".join(teams)
>>> 'Packers, 49ers, Ravens, Patriots'

从字典中获取元素

我承认try/except代码并不雅致,不过这里有一种简单方法,尝试在字典中查找key,如果没有找到对应的alue将用第二个参数设为其变量值。

data = {'user': 1, 'name': 'Max', 'three': 4}
try:
 is_admin = data['admin']
except KeyError:
 is_admin = False
1

替换诚这样:

data = {'user': 1, 'name': 'Max', 'three': 4}
is_admin = data.get('admin', False)

获取列表的子集

有时,你只需要列表中的部分元素,这里是一些获取列表子集的方法。

x = [1,2,3,4,5,6]
#前3个
print x[:3]
>>> [1,2,3]
#中间4个
print x[1:5]
>>> [2,3,4,5]
#最后3个
print x[-3:]
>>> [4,5,6]
#奇数项
print x[::2]
>>> [1,3,5]
#偶数项
print x[1::2]
>>> [2,4,6]

60个字符解决FizzBuzz

前段时间Jeff Atwood 推广了一个简单的编程练习叫FizzBuzz,问题引用如下:

写一个程序,打印数字1到100,3的倍数打印“Fizz”来替换这个数,5的倍数打印“Buzz”,对于既是3的倍数又是5的倍数的数字打印“FizzBuzz”。

这里就是一个简短的,有意思的方法解决这个问题:

for x in range(101):print"fizz"[x%3*4::]+"buzz"[x%5*4::]or x

集合

除了python内置的数据类型外,在collection模块同样还包括一些特别的用例,在有些场合Counter非常实用。如果你参加过在这一年的Facebook HackerCup,你甚至也能找到他的实用之处。

from collections import Counter
print Counter("hello")
>>> Counter({'l': 2, 'h': 1, 'e': 1, 'o': 1})

 迭代工具

和collections库一样,还有一个库叫itertools,对某些问题真能高效地解决。其中一个用例是查找所有组合,他能告诉你在一个组中元素的所有不能的组合方式

from itertools import combinations
teams = ["Packers", "49ers", "Ravens", "Patriots"]
for game in combinations(teams, 2):
 print game
>>> ('Packers', '49ers')
>>> ('Packers', 'Ravens')
>>> ('Packers', 'Patriots')
>>> ('49ers', 'Ravens')
>>> ('49ers', 'Patriots')
>>> ('Ravens', 'Patriots')

False == True

比起实用技术来说这是一个很有趣的事,在python中,True和False是全局变量,因此:

False = True
if False:
 print "Hello"
else:
 print "World"
>>> Hello
(0)

相关推荐

  • Python字符串中查找子串小技巧

    惭愧啊,今天写了个查找子串的Python程序被BS了- 如果让你写一个程序检查字符串s2中是不是包含有s1.也许你会很直观的写下下面的代码: 复制代码 代码如下: #determine whether s1 is a substring of s2 def isSubstring1(s1,s2):     tag = False     len1 = len(s1)     len2 = len(s2)     for i in range(0,len2):         if s2[i] =

  • Python合并多个装饰器小技巧

    django程序,需要写很多api,每个函数都需要几个装饰器,例如 复制代码 代码如下: @csrf_exempt  @require_POST  def  foo(request):      pass 既然那么多个方法都需要写2个装饰器,或者多个,有啥办法把多个合并成一行呢? 上面的函数执行过程应该是 复制代码 代码如下: csrf_exempt(require_POST(foo)) 修改成 复制代码 代码如下: def compose(*funs):      def deco(f): 

  • 收藏整理的一些Python常用方法和技巧

    1. 逆转字符串的三种方法 1.1. 模拟C++中方法, 定义一个空字符串来实现 通过设置一个空字符串, 然后讲参数中的字符串从后往前遍历, 使用字符串的加法合并为新的字符串 复制代码 代码如下: def reverse(text) :     str = ''     index = len(text) - 1     while index >= 0 :         str += text[index]         index -= 1     return str 1.2. 使用切

  • Python常用小技巧总结

    本文实例总结了Python常用的小技巧.分享给大家供大家参考.具体分析如下: 1. 获取本地mac地址: import uuid mac = uuid.uuid1().hex[-12:] print(mac) 运行结果:e0cb4e077585 2. del 的使用 a = ['b','c','d'] del a[0] print(a)# 输出 ['c', 'd'] a = ['b','c','d'] del a[0:2] # 删除从第1个元素开始,到第2个元素 print(a)# 输出 ['d

  • 低版本中Python除法运算小技巧

    首先要说的是python中的除法运算,在python 2.5版本中存在两种除法运算,即所谓的true除法和floor除法.当使用x/y形式进行除法运算时,如果x和y都是整形,那么运算的会对结果进行截取,取运算的整数部分,比如2/3的运算结果是0:如果x和y中有一个是浮点数,那么会进行所谓的true除法,比如2.0/3的结果是 0.66666666666666663.另外一种除法是采用x//y的形式,那么这里采用的是所谓floor除法,即得到不大于结果的最大整数值,这个运算时与操作数无关的.比如2

  • 介绍Python中的一些高级编程技巧

     正文: 本文展示一些高级的Python设计结构和它们的使用方法.在日常工作中,你可以根据需要选择合适的数据结构,例如对快速查找性的要求.对数据一致性的要求或是对索引的要求等,同时也可以将各种数据结构合适地结合在一起,从而生成具有逻辑性并易于理解的数据模型.Python的数据结构从句法上来看非常直观,并且提供了大量的可选操作.这篇指南尝试将大部分常用的数据结构知识放到一起,并且提供对其最佳用法的探讨. 推导式(Comprehensions) 如果你已经使用了很长时间的Python,那么你至少应该

  • Python性能优化技巧

    Python是一门非常酷的语言,因为很少的Python代码可以在短时间内做很多事情,并且,Python很容易就能支持多任务和多重处理. py 1.关键代码可以依赖于扩展包 Python使许多编程任务变得简单,但是对于很关键的任务并不总是提供最好的性能.使用C.C++或者机器语言扩展包来执行关键任务能极大改善性能.这些包是依赖于平台的,也就是说,你必须使用特定的.与你使用的平台相关的包.简而言之,该解决方案提供了一些应用程序的可移植性,以换取性能,您可以获得只有通过直接向底层主机编程.下面这些扩展

  • 总结Python编程中三条常用的技巧

    在 python 代码中可以看到一些常见的 trick,在这里做一个简单的小结. json 字符串格式化 在开发 web 应用的时候经常会用到 json 字符串,但是一段比较长的 json 字符串是可读性较差的,不容易看出来里面结构的. 这时候就可以用 python 来把 json 字符串漂亮的打印出来. root@Exp-1:/tmp# cat json.txt {"menu": {"breakfast": {"English Muffin":

  • 适合Python初学者的一些编程技巧

    这篇文章主要介绍了给Python初学者的一些编程技巧,皆是基于基础的一些编程习惯建议,需要的朋友可以参考下 交换变量 x = 6 y = 5 x, y = y, x print x >>> 5 print y >>> 6 if 语句在行内 print "Hello" if True else "World" >>> Hello 连接 下面的最后一种方式在绑定两个不同类型的对象时显得很co nfc = ["

  • 给Python初学者的一些编程技巧

    交换变量   x = 6 y = 5 x, y = y, x print x >>> 5 print y >>> 6 if 语句在行内 print "Hello" if True else "World" >>> Hello 连接 下面的最后一种方式在绑定两个不同类型的对象时显得很cool. nfc = ["Packers", "49ers"] afc = ["R

  • 有关Python的22个编程技巧

    1. 原地交换两个数字 Python 提供了一个直观的在一行代码中赋值与交换(变量值)的方法,请参见下面的示例: x,y= 10,20 print(x,y) x,y= y,x print(x,y) #1 (10, 20) #2 (20, 10) 赋值的右侧形成了一个新的元组,左侧立即解析(unpack)那个(未被引用的)元组到变量 <a> 和 <b>. 一旦赋值完成,新的元组变成了未被引用状态并且被标记为可被垃圾回收,最终也完成了变量的交换. 2. 链状比较操作符 比较操作符的聚合

  • 分享18 个 Python 高效编程技巧

    目录 01 交换变量 02 字典推导(Dictionary comprehensions)和集合推导(Set comprehensions) 03 计数时使用Counter计数对象. 04 漂亮的打印出JSON 05 解决FizzBuzz 06 if 语句在行内 07 连接 08 数值比较 09 同时迭代两个列表 10 带索引的列表迭代 11 列表推导式 12 字典推导 13 初始化列表的值 14 列表转换为字符串 15 从字典中获取元素 16 获取列表的子集 17 迭代工具 18 False

  • 分享Python 的24个编程超好用技巧

    目录 1.ALLORANY 2.BASHPLOTIB 3.COLLECTIONS 4.DIR 5.EMOJI 6.FROM_FUTURE_IMPORT 7.GEOPY 8.HOWDOI 9.INSPECT 10.JEDI 11.**KWARGS 12.LISTCOMPREHENSIONS 13.MAP 14.NEWSPAPER3K 15.OPERATOROVERLOADING(操作符重载) 16.PPRINT 17.QUEUE(队列) 18.sh 19.TYPEHINT(类型提示) 20.UUI

  • 18 个 Python 编程技巧,提高工作效率

    目录 01交换变量 02字典推导(Dictionarycomprehensions)和集合推导(Setcomprehensions) 03计数时使用Counter计数对象. 04漂亮的打印出JSON 05解决FizzBuzz 06if语句在行内 07连接 08数值比较 09同时迭代两个列表 10带索引的列表迭代 11列表推导式 12字典推导 13初始化列表的值 14列表转换为字符串 15从字典中获取元素 16获取列表的子集 17迭代工具 18FalseTrue 前言: 初识Python语言,觉得

  • 符合语言习惯的 Python 优雅编程技巧【推荐】

    Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净.整洁.一目了然.要写出 Pythonic(优雅的.地道的.整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests.flask.tornado,下面列举一些常见的Pythonic写法. 0. 程序必须先让人读懂,然后才能让计算机执行. "Programs must be written for people to read, and only incidentally f

  • python 19个值得学习的编程技巧

    Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净.整洁.一目了然.要写出 Pythonic(优雅的.地道的.整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests.flask.tornado,下面列举一些常见的Pythonic写法. 0. 程序必须先让人读懂,然后才能让计算机执行. "Programs must be written for people to read, and only incidentally f

  • Python 高效编程技巧分享

    一.根据条件在序列中筛选数据 假设有一个数字列表 data, 过滤列表中的负数 data = [1, 2, 3, 4, -5] # 使用列表推导式 result = [i for i in data if i >= 0] # 使用 fliter 过滤函数 result = filter(lambda x: x >= 0, data) 学生的数学分数以字典形式存储,筛选其中分数大于 80 分的同学 from random import randint d = {x: randint(50, 10

  • 3个 Python 编程技巧

    目录 1.如何按照字典的值的大小进行排序 2.优雅的一次性判断多个条件 3.如何优雅的合并两个字典 今天分享 3 个 Python 编程小技巧,来看看你是否用过? 1.如何按照字典的值的大小进行排序 我们知道,字典的本质是哈希表,本身是无法排序的,但 Python 3.6 之后,字典是可以按照插入的顺序进行遍历的,这就是有序字典,其中的原理,可以阅读为什么 Python3.6 之后字典是有序的. 知道了这一点,就好办了,先把字典的键值对列表排序,然后重新插入新的字典,这样新字典就可以按照值的大小

随机推荐