JavaScript实现多种排序算法

笔试面试经常涉及各种算法,本文简要介绍常用的一些算法,并用JavaScript实现。

1、插入排序

1)算法简介

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

2)算法描述和实现

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

从第一个元素开始,该元素可以认为已经被排序;
取出下一个元素,在已经排序的元素序列中从后向前扫描;
如果该元素(已排序)大于新元素,将该元素移到下一位置;
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
将新元素插入到该位置后;
重复步骤2~5。
JavaScript代码实现:

 function insertionSort(array) {
  if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
    for (var i = 1; i < array.length; i++) {
      var key = array[i];
      var j = i - 1;
      while (j >= 0 && array[j] > key) {
        array[j + 1] = array[j];
        j--;
      }
      array[j + 1] = key;
    }
    return array;
  } else {
    return 'array is not an Array!';
  }
}

3)算法分析

最佳情况:输入数组按升序排列。T(n) = O(n)
最坏情况:输入数组按降序排列。T(n) = O(n2)
平均情况:T(n) = O(n2)
二、二分插入排序

1)算法简介

二分插入(Binary-insert-sort)排序是一种在直接插入排序算法上进行小改动的排序算法。其与直接插入排序算法最大的区别在于查找插入位置时使用的是二分查找的方式,在速度上有一定提升。

2)算法描述和实现

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

从第一个元素开始,该元素可以认为已经被排序;
取出下一个元素,在已经排序的元素序列中二分查找到第一个比它大的数的位置;
将新元素插入到该位置后;
重复上述两步。
JavaScript代码实现:

 function binaryInsertionSort(array) {
  if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
    for (var i = 1; i < array.length; i++) {
      var key = array[i], left = 0, right = i - 1;
      while (left <= right) {
        var middle = parseInt((left + right) / 2);
        if (key < array[middle]) {
          right = middle - 1;
        } else {
          left = middle + 1;
        }
      }
      for (var j = i - 1; j >= left; j--) {
        array[j + 1] = array[j];
      }
      array[left] = key;
    }
    return array;
  } else {
    return 'array is not an Array!';
  }
}

3)算法分析

最佳情况:T(n) = O(nlogn)
最差情况:T(n) = O(n2)
平均情况:T(n) = O(n2)
三、选择排序

1)算法简介

选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

2)算法描述和实现

n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:

初始状态:无序区为R[1..n],有序区为空;
第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
n-1趟结束,数组有序化了。
JavaScript代码实现:

 function selectionSort(array) {
  if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
    var len = array.length, temp;
    for (var i = 0; i < len - 1; i++) {
      var min = array[i];
      for (var j = i + 1; j < len; j++) {
        if (array[j] < min) {
          temp = min;
          min = array[j];
          array[j] = temp;
        }
      }
      array[i] = min;
    }
    return array;
  } else {
    return 'array is not an Array!';
  }
}

3)算法分析

最佳情况:T(n) = O(n2)
最差情况:T(n) = O(n2)
平均情况:T(n) = O(n2)
四、冒泡排序

1)算法简介

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

2)算法描述和实现

具体算法描述如下:

比较相邻的元素。如果第一个比第二个大,就交换它们两个;
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
针对所有的元素重复以上的步骤,除了最后一个;
重复步骤1~3,直到排序完成。
JavaScript代码实现:

 function bubbleSort(array) {
  if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
    var len = array.length, temp;
    for (var i = 0; i < len - 1; i++) {
      for (var j = len - 1; j >= i; j--) {
        if (array[j] < array[j - 1]) {
          temp = array[j];
          array[j] = array[j - 1];
          array[j - 1] = temp;
        }
      }
    }
    return array;
  } else {
    return 'array is not an Array!';
  }
}

3)算法分析

最佳情况:T(n) = O(n)
最差情况:T(n) = O(n2)
平均情况:T(n) = O(n2)
五、快速排序

1)算法简介

快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

2)算法描述和实现

快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

从数列中挑出一个元素,称为 "基准"(pivot);
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
JavaScript代码实现:

 //方法一
function quickSort(array, left, right) {
  if (Object.prototype.toString.call(array).slice(8, -1) === 'Array' && typeof left === 'number' && typeof right === 'number') {
    if (left < right) {
      var x = array[right], i = left - 1, temp;
      for (var j = left; j <= right; j++) {
        if (array[j] <= x) {
          i++;
          temp = array[i];
          array[i] = array[j];
          array[j] = temp;
        }
      }
      quickSort(array, left, i - 1);
      quickSort(array, i + 1, right);
    };
  } else {
    return 'array is not an Array or left or right is not a number!';
  }
}
var aaa = [3, 5, 2, 9, 1];
quickSort(aaa, 0, aaa.length - 1);
console.log(aaa);

//方法二
var quickSort = function(arr) {
  if (arr.length <= 1) { return arr; }
  var pivotIndex = Math.floor(arr.length / 2);
  var pivot = arr.splice(pivotIndex, 1)[0];
  var left = [];
  var right = [];
  for (var i = 0; i < arr.length; i++){
    if (arr[i] < pivot) {
      left.push(arr[i]);
    } else {
      right.push(arr[i]);
    }
  }
  return quickSort(left).concat([pivot], quickSort(right));
};

3)算法分析

最佳情况:T(n) = O(nlogn)
最差情况:T(n) = O(n2)
平均情况:T(n) = O(nlogn)
六、堆排序

1)算法简介

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

2)算法描述和实现

具体算法描述如下:

将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区;
将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,......Rn-1)和新的有序区(Rn),且满足R[1,2...n-1]<=R[n];
由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,......Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2....Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
JavaScript代码实现:

 /*方法说明:堆排序
@param array 待排序数组*/

function heapSort(array) {
  if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {

//建堆
    var heapSize = array.length, temp;
    for (var i = Math.floor(heapSize / 2); i >= 0; i--) {
      heapify(array, i, heapSize);
    }

//堆排序
    for (var j = heapSize - 1; j >= 1; j--) {
      temp = array[0];
      array[0] = array[j];
      array[j] = temp;
      heapify(array, 0, --heapSize);
    }
  } else {
    return 'array is not an Array!';
  }
}
/*方法说明:维护堆的性质
@param arr 数组
@param x  数组下标
@param len 堆大小*/
function heapify(arr, x, len) {
  if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === 'number') {
    var l = 2 * x, r = 2 * x + 1, largest = x, temp;
    if (l < len && arr[l] > arr[largest]) {
      largest = l;
    }
    if (r < len && arr[r] > arr[largest]) {
      largest = r;
    }
    if (largest != x) {
      temp = arr[x];
      arr[x] = arr[largest];
      arr[largest] = temp;
      heapify(arr, largest, len);
    }
  } else {
    return 'arr is not an Array or x is not a number!';
  }
}

3)算法分析

最佳情况:T(n) = O(nlogn)
最差情况:T(n) = O(nlogn)
平均情况:T(n) = O(nlogn)
七、归并排序

1)算法简介

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

2)算法描述和实现

具体算法描述如下:

把长度为n的输入序列分成两个长度为n/2的子序列;
对这两个子序列分别采用归并排序;
将两个排序好的子序列合并成一个最终的排序序列。
JavaScript代码实现:

 function mergeSort(array, p, r) {
  if (p < r) {
    var q = Math.floor((p + r) / 2);
    mergeSort(array, p, q);
    mergeSort(array, q + 1, r);
    merge(array, p, q, r);
  }
}
function merge(array, p, q, r) {
  var n1 = q - p + 1, n2 = r - q, left = [], right = [], m = n = 0;
  for (var i = 0; i < n1; i++) {
    left[i] = array[p + i];
  }
  for (var j = 0; j < n2; j++) {
    right[j] = array[q + 1 + j];
  }
  left[n1] = right[n2] = Number.MAX_VALUE;
  for (var k = p; k <= r; k++) {
    if (left[m] <= right[n]) {
      array[k] = left[m];
      m++;
    } else {
      array[k] = right[n];
      n++;
    }
  }
}

3)算法分析

最佳情况:T(n) = O(n)
最差情况:T(n) = O(nlogn)
平均情况:T(n) = O(nlogn)
八、桶排序

1)算法简介

桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序)。

2)算法描述和实现

具体算法描述如下:

设置一个定量的数组当作空桶;
遍历输入数据,并且把数据一个一个放到对应的桶里去;
对每个不是空的桶进行排序;
从不是空的桶里把排好序的数据拼接起来。
JavaScript代码实现:

 /*方法说明:桶排序
@param array 数组
@param num  桶的数量*/
function bucketSort(array, num) {
  if (array.length <= 1) {
    return array;
  }
  var len = array.length, buckets = [], result = [], min = max = array[0], regex = '/^[1-9]+[0-9]*$/', space, n = 0;
  num = num || ((num > 1 && regex.test(num)) ? num : 10);
  for (var i = 1; i < len; i++) {
    min = min <= array[i] ? min : array[i];
    max = max >= array[i] ? max : array[i];
  }
  space = (max - min + 1) / num;
  for (var j = 0; j < len; j++) {
    var index = Math.floor((array[j] - min) / space);
    if (buckets[index]) {
// 非空桶,插入排序
      var k = buckets[index].length - 1;
      while (k >= 0 && buckets[index][k] > array[j]) {
        buckets[index][k + 1] = buckets[index][k];
        k--;
      }
      buckets[index][k + 1] = array[j];
    } else {
//空桶,初始化
      buckets[index] = [];
      buckets[index].push(array[j]);
    }
  }
  while (n < num) {
    result = result.concat(buckets[n]);
    n++;
  }
  return result;
}

3)算法分析

桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。

九、计数排序

1)算法简介

计数排序(Counting sort)是一种稳定的排序算法。计数排序使用一个额外的数组C,其中第i个元素是待排序数组A中值等于i的元素的个数。然后根据数组C来将A中的元素排到正确的位置。它只能对整数进行排序。

2)算法描述和实现

具体算法描述如下:

找出待排序的数组中最大和最小的元素;
统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。
JavaScript代码实现:

 function countingSort(array) {
  var len = array.length, B = [], C = [], min = max = array[0];
  for (var i = 0; i < len; i++) {
    min = min <= array[i] ? min : array[i];
    max = max >= array[i] ? max : array[i];
    C[array[i]] = C[array[i]] ? C[array[i]] + 1 : 1;
  }
  for (var j = min; j < max; j++) {
    C[j + 1] = (C[j + 1] || 0) + (C[j] || 0);
  }
  for (var k = len - 1; k >=0; k--) {
    B[C[array[k]] - 1] = array[k];
    C[array[k]]--;
  }
  return B;
}

3)算法分析

当输入的元素是n 个0到k之间的整数时,它的运行时间是 O(n + k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。

以上就是关于常见javascript排序算法的全部内容,希望对大家的学习有所帮助。

(0)

相关推荐

  • JavaScript希尔排序、快速排序、归并排序算法

    以var a = [4,2,6,3,1,9,5,7,8,0];为例子. 1.希尔排序. 希尔排序是在插入排序上面做的升级.是先跟距离较远的进行比较的一些方法. function shellsort(arr){ var i,k,j,len=arr.length,gap = Math.ceil(len/2),temp; while(gap>0){ for (var k = 0; k < gap; k++) { var tagArr = []; tagArr.push(arr[k]) for (i

  • JavaScript中九种常用排序算法

    笔试面试经常涉及各种算法,本文简要介绍常用的一些算法,并用JavaScript实现. 一.插入排序 1)算法简介 插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法.它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入.插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间. 2)算法描述和实现 一般来说,插入排序都采

  • javascript时间排序算法实现活动秒杀倒计时效果

    制做一个活动页面 秒杀列表页 需要一个时间的算法排序 自己琢磨了半天想了各种算法也没搞出来,后来问了下一个后台的php同学 他写了个算法给我看了下 ,刚开始看的时候觉得这就是个纯算法,不能转化成页面的dom效果,可是再看了两遍发现可以, 于是我就改了改,实现了,先分享给大家. 页面需求是:从11点到20点 每隔一个小时一场秒杀 如果是当前时间就显示正在秒杀 之前的商品就往最后排 以此类推 类似最开始的11点顺序是 11,12,13,14,15,16,17,18,19,20(点): 到12点的顺序

  • 几种经典排序算法的JS实现方法

    一.冒泡排序 function BubbleSort(array) { var length = array.length; for (var i = length - 1; i > 0; i--) { //用于缩小范围 for (var j = 0; j < i; j++) { //在范围内进行冒泡,在此范围内最大的一个将冒到最后面 if (array[j] > array[j+1]) { var temp = array[j]; array[j] = array[j+1]; arra

  • js的各种排序算法实现(总结)

    如下所示: // ---------- 一些排序算法 var Sort = {} Sort.prototype = { // 利用sort进行排序 systemSort:function(array){ return array.sort(function(a, b){ return a - b; }); }, // 冒泡排序 bubbleSort:function(array){ var i = 0, len = array.length, j, d; for(; i<len; i++){ f

  • JS随机洗牌算法之数组随机排序

    推荐阅读:JavaScript学习笔记之数组的增.删.改.查 JavaScript学习笔记之数组求和方法 JavaScript学习笔记之数组随机排序 洗牌算法是一个比较形象的术语,本质上让一个数组内的元素随机排列.举例来说,我们有一个如下图所示的数组,数组长度为 9,数组内元素的值顺次分别是 1~9: 从上面这个数组入手,我们要做的就是打乱数组内元素的顺序: 代码实现 维基百科上的 Fisher–Yates shuffle 词条对洗牌算法做了详细介绍,下面演示的算法也是基于其中的理论编写的: A

  • Javascript堆排序算法详解

    堆排序分为两个过程: 1.建堆. 堆实质上是完全二叉树,必须满足:树中任一非叶子结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字. 堆分为:大根堆和小根堆,升序排序采用大根堆,降序排序采用小根堆. 如果是大根堆,则通过调整函数将值最大的节点调整至堆根. 2.将堆根保存于尾部,并对剩余序列调用调整函数,调整完成后,再将最大跟保存于尾部-1(-1,-2,...,-i),再对剩余序列进行调整,反复进行该过程,直至排序完成. 复制代码 代码如下: //调整函数 function head

  • JS及PHP代码编写八大排序算法

    从学习数据结构开始就接触各种算法基础,但是自从应付完考试之后就再也没有练习过,当在开发的时候也是什么时候使用什么时候去查一下,现在在学习JavaScript,趁这个时间再把各种基础算法整理一遍,分别以JS和PHP语法的方式编写代码. 1.冒泡排序 原理:临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束 时间复杂度:平均情况:O(n2)  最好情况:O(n) 最坏情况:O(n2)

  • Javascript快速排序算法详解

    快速排序是对冒泡排序的一种改进.通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,最终达到整个数据变成有序序列. 假设要排序的数组是A[0]--A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为基准数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序.值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对

  • Javascript冒泡排序算法详解

    比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 针对所有的元素重复以上的步骤,除了最后一个. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较. 复制代码 代码如下: function sort(elements){   for(var i=0;i<elements.length-1;i++){     for(var j=0;j<elements.length-i-

随机推荐