python opencv实现切变换 不裁减图片

本文实例为大家分享了python opencv实现切变换的具体代码,供大家参考,具体内容如下

# -*- coding:gb2312 -*-
import cv2
from math import *
import numpy as np

img = cv2.imread("3-2.jpg")

height,width=img.shape[:2]

degreeAffine=45

#切变换最后结果
heightAffine=height
widthAffine=int(2*height*tan(radians(degreeAffine))+width)

# 随意两点得到仿射变换矩阵
# point1=np.float32([[50,50],[200,50],[50,200]])
# point2=np.float32([[50,50],[100,50],[50,200]])
# matAffine=cv2.getAffineTransform(point1,point2)

#如果结果是正的图片
tempY=(widthAffine+1)/2-width/2
tempX=(heightAffine+1)/2-height/2
temp=np.zeros((heightAffine,widthAffine,3),np.uint8)+255
temp[tempX:(tempX+height),tempY:(tempY+width)]=img
cv2.imshow("temp",temp)

#仿射变换矩阵
matAffine=np.zeros([2,3])
matAffine[0,0]=1
matAffine[0,1]=tan(radians(degreeAffine))
matAffine[0,2]=(widthAffine-width)/2
matAffine[1,0]=0
matAffine[1,1]=1
matAffine[1,2]=(heightAffine-height)/2

imgAfiine=cv2.warpAffine(img,matAffine,(widthAffine,heightAffine),borderValue=(255,255,255))

cv2.imwrite("temp.jpg",temp)
cv2.imwrite("imgAffine.jpg",imgAfiine)
cv2.imshow("imgAffine",imgAfiine)

效果图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python+opencv 实现图片文字的分割的方法示例

    实现步骤: 1.通过水平投影对图形进行水平分割,获取每一行的图像: 2.通过垂直投影对分割的每一行图像进行垂直分割,最终确定每一个字符的坐标位置,分割出每一个字符: 先简单介绍一下投影法:分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 下面通过Python+opencv来实现该功能 首先来实现水平投影: import cv2 impor

  • python opencv旋转图像(保持图像不被裁减)

    本文实例为大家分享了python opencv旋转图像的具体代码,保持图像不被裁减,供大家参考,具体内容如下 # -*- coding:gb2312 -*- import cv2 from math import * import numpy as np img = cv2.imread("3-2.jpg") height,width=img.shape[:2] degree=45 #旋转后的尺寸 heightNew=int(width*fabs(sin(radians(degree)

  • 在Python下利用OpenCV来旋转图像的教程

    OpenCV是应用最被广泛的的开源视觉库.他允许你使用很少的代码来检测图片或视频中的人脸. 这里有一些互联网上的教程来阐述怎么在OpenCV中使用仿射变换(affine transform)旋转图片--他们并没有处理旋转一个图片里的矩形一般会把矩形的边角切掉这一问题,所以产生的图片需要修改.当正确的使用一点代码时,这是一点瑕疵. def rotate_about_center(src, angle, scale=1.): w = src.shape[1] h = src.shape[0] ran

  • python opencv对图像进行旋转且不裁剪图片的实现方法

    最近在做深度学习时需要用到图像处理相关的操作,在度娘上找到的图片旋转方法千篇一律,旋转完成的图片都不是原始大小,很苦恼,于是google到歪果仁的网站扒拉了一个方法,亲测好用,再次嫌弃天下文章一大抄的现象,虽然我也是抄歪果仁的. 废话不多说了,直接贴代码了. def rotate_bound(image, angle): # grab the dimensions of the image and then determine the # center (h, w) = image.shape[

  • python opencv实现旋转矩形框裁减功能

    本文实例为大家分享了python opencv实现旋转矩形框裁减的具体代码,供大家参考,具体内容如下 经常遇见旋转矩形框的裁减问题,那么思路是,将矩形框旋转正然后再裁减 # -*- coding:gb2312 -*- import cv2 from math import * import numpy as np import time def rotateImage(img,degree,pt1,pt2,pt3,pt4): height,width=img.shape[:2] heightNe

  • python opencv实现图片旋转矩形分割

    有时候需要对有角度的矩形框内图像从原图片中分割出来.这里的程序思想是,先将图片进行矩形角度的旋转,使有角度的矩形处于水平状态后,根据原来坐标分割图片. 参考:python opencv实现旋转矩形框裁减功能 修改原来的程序: 1.旋转函数的输入仅为矩形的四点坐标 2.角度由公式计算出来 3.矩形四点pt1,pt2,pt3,pt4由txt文件读入 4.在旋转程序中还处理了顺时针和逆时针及出现矩形框翻转的问题. 代码: # -*- coding:utf-8 -*- import cv2 from m

  • python使用opencv对图像mask处理的方法

    MASK图像掩膜处理 在图像操作中有时候会用到掩膜处理,如果使用遍历法掩膜图像ROI区域对于python来讲是很慢的,所以我们要找到一种比较好的算法来实现掩膜处理. 假设我们有一副图像: 而我们关心的区域就在这一小堆线上,想把这一堆线提取出来,我们先通过numpy生成一个mask图像: sss=np.zeros([480,640],dtype=np.uint8) sss[300:350,310:400]=255 生成一个640*480大小的一个图片,填充为0,然后在300:350,310:400

  • python opencv 图像拼接的实现方法

    初级的图像拼接为将两幅图像简单的粘贴在一起,仅仅是图像几何空间的转移与合成,与图像内容无关.高级图像拼接也叫作基于特征匹配的图像拼接,拼接时消去两幅图像相同的部分,实现拼接合成全景图. 具有相同尺寸的图A和图B含有相同的部分与不同的部分,如图所示:             用基于特征的图像拼接实现后: 设图像高为h,相同部分的宽度为wx 拼接后图像的宽w=wA+wB-wx 因此,可以先构建一个高为h,宽为W*2的空白图像,将左图像向右平移wx,右图像粘贴在右侧.则右图像刚好覆盖左图像中的相同部分

  • python通过opencv实现批量剪切图片

    上一篇文章中,我们介绍了python实现图片处理和特征提取详解,这里我们再来看看Python通过OpenCV实现批量剪切图片,具体如下. 做图像处理需要大批量的修改图片尺寸来做训练样本,为此本程序借助opencv来实现大批量的剪切图片. import cv2 import os def cutimage(dir,suffix): for root,dirs,files in os.walk(dir): for file in files: filepath = os.path.join(root

  • python opencv实现切变换 不裁减图片

    本文实例为大家分享了python opencv实现切变换的具体代码,供大家参考,具体内容如下 # -*- coding:gb2312 -*- import cv2 from math import * import numpy as np img = cv2.imread("3-2.jpg") height,width=img.shape[:2] degreeAffine=45 #切变换最后结果 heightAffine=height widthAffine=int(2*height*

  • python opencv通过4坐标剪裁图片

    本文主要介绍了python opencv通过4坐标剪裁图片,分享给大家,具体如下: 效果展示, 裁剪出的单词图像(如下) 这里程序我是用在paddleOCR里面,通过识别模型将识别出的图根据程序提供的坐标(即四个顶点的值)进行抠图的程序(上面的our和and就是扣的图),并进行了封装,相同格式的在这个基础上改就是了 [[[368.0, 380.0], [437.0, 380.0], [437.0, 395.0], [368.0, 395.0]], [[496.0, 376.0], [539.0,

  • python openCV实现摄像头获取人脸图片

    本文实例为大家分享了python openCV实现摄像头获取人脸图片的具体代码,供大家参考,具体内容如下 在机器学习中,训练模型需要大量图片,通过openCV中的库可以快捷的调用摄像头,截取图片,可以快速的获取大量人脸图片 需要注意将CascadeClassifier方法中的地址改为自己包cv2包下面的文件 import cv2 def load_img(path,name,mun = 100,add_with = 0): # 获取人脸识别模型 # # #以下路径需要更改为自己环境下xml文件

  • Python + opencv对拍照得到的图片进行背景去除的实现方法

    有时候我们没办法得到pdf或者word文档,这个时候会使用手机或者相机进行拍照,往往会出现背景,打印出来就是灰色的或者有黑色的背景,这个时候影响视野观看,通过代码实现对背景去除,还原清晰图像.代码如下: #!/usr/bin/python3.6 # -*- coding: utf-8 -*- # @Time : 2020/11/17 19:06 # @Author : ptg # @Email : zhxwhchina@163.com # @File : 去背景.py # @Software:

  • Python+Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • Python实现将照片变成卡通图片的方法【基于opencv】

    本文实例讲述了Python实现将照片变成卡通图片的方法.分享给大家供大家参考,具体如下: 之前的文章介绍了使用Photoshop将照片变成卡通图片,今次介绍用代码来实现这项任务,可以就此探查各种滤镜的内部机制. 制作环境:Windows10,Python2.7,Anaconda 任务描述:将D盘某文件夹中的所有图片使用代码进行卡通化,然后保存到另一文件夹中. 如前文所述,卡通化的关键是强化边缘与减少色彩,所以使用Photoshop进行卡通化的时候就使用了照亮边缘和干笔画的滤镜来处理.使用代码处理

  • Python基于opencv调用摄像头获取个人图片的实现方法

    接触图像领域的应该对于opencv都不会感到陌生,这个应该算是功能十分强劲的一个算法库了,当然了,使用起来也是很方便的,之前使用Windows7的时候出现多该库难以安装成功的情况,现在这个问题就不存在了,需要安装包的话可以去我的资源中下载使用,使用pip安装方式十分地便捷. 今天主要是基于opencv模块来调用笔记本的内置摄像头,然后从视频流中获取到人脸的图像数据用于之后的人脸识别项目,也就是为了构建可用的数据集.整个实现过程并不复杂,具体如下: #!usr/bin/env python #en

  • python+opencv实现动态物体识别

    注意:这种方法十分受光线变化影响 自己在家拿着手机瞎晃的成果图: 源代码: # -*- coding: utf-8 -*- """ Created on Wed Sep 27 15:47:54 2017 @author: tina """ import cv2 import numpy as np camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头 # 判断视频是否打开 if (camera.isOpened()

  • python+opencv识别图片中的圆形

    本文实例为大家分享了python+opencv识别图片中足球的方法,供大家参考,具体内容如下 先补充下霍夫圆变换的几个参数知识: dp,用来检测圆心的累加器图像的分辨率于输入图像之比的倒数,且此参数允许创建一个比输入图像分辨率低的累加器.上述文字不好理解的话,来看例子吧.例如,如果dp= 1时,累加器和输入图像具有相同的分辨率.如果dp=2,累加器便有输入图像一半那么大的宽度和高度. minDist,为霍夫变换检测到的圆的圆心之间的最小距离,即让我们的算法能明显区分的两个不同圆之间的最小距离.这

随机推荐