Python中整数的缓存机制讲解

在python中,如下代码结果一定不会让你吃惊:

Python 3.3.2 (v3.3.2:d047928ae3f6, May 16 2013, 00:06:53) [MSC v.1600 64 bit (AMD64)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> a=345
>>> b=a
>>> a is b
True
>>>

没错,在python一切皆是对象,而对象是通过引用传递的。在赋值时,不管这个对象是新创建的,还是一个已经存在的,都是将该对象的引用赋值给变量。故这里a实际上和b是同一个对象,a is b为true!

当然稍为了解python的人我相信都会知道以上相关知识的。但是如下的代码结果,却让人不大好理解了:

>>> c=256
>>> d=256
>>> c is d
True
>>> e=257
>>> f=257
>>> e is f
False
>>>

我们将c赋值为了整型值256,d也为256,e为257,f为257。但是当把c与d,e与f进行is操作时,却发现两者的结果不同。

原因在哪?

——这个是由python中的整型对象的缓冲池机制,所决定的。

在python中几乎所有的内建对象,都会有自己所特有的对象池机制。

1.小整数对象——小整型对象池

在实际编程中,数值比较小的整数,比如1,2,29等,可能会非常频繁的出现。而在python中,所有的对象都存在与系统堆上。想想?如果某个小整数出现的次数非常多,那么python将会出现大量的malloc/free操作,这样大大降低了运行效率,而且会造成大量的内存碎片,严重影响Python的整体性能。

在python2.5乃至3.3中,将小整数位于[-5,257)之间的数,缓存在小整型对象池中。

这也就是为了c is d而e is not f的原因了。

2.大整数对象——通用整数对象池

由以上知,python把小整型数完全的缓存在了小对象缓存池中了。而那些大整数对象就没有那么好的待遇了!python运行环境提供了一块内存空间供大整数轮流使用。通常称为通用整数对象池。这也就是说大整数其实也是有缓存的。该对象池使用链表组织,虽然e和f有着相同的值,但是在链表中确是不同的节点。也就是说e和f根本不是一个对象。至于既然有缓存,为什么e和f还要组织为两个节点,就不大明白了。

讲讲我的看法吧:我觉得从语义上来讲e=257和f=257本身就是应当为两个不同的对象(这点和对象赋值不同)。由于整数缓存池的存在,让大家觉得任何整数在缓冲池中都只能存在一个,不能重复。但将e和f在整数缓冲池中组织为一个节点或两个节点没有什么本质区别吧(除了浪费了一点内存)。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。如果你想了解更多相关内容请查看下面相关链接

(0)

相关推荐

  • python中stdout输出不缓存的设置方法

    考虑以下python程序: 复制代码 代码如下: #!/usr/bin/env python import sys sys.stdout.write("stdout1 ")sys.stderr.write("stderr1 ")sys.stdout.write("stdout2 ")sys.stderr.write("stderr2 ") 其中的sys.stdout.write也可以换成print.运行这程序,你觉得会输出什么

  • 在Python中使用AOP实现Redis缓存示例

    越来越觉得的缓存是计算机科学里最NB的发明(没有之一),本文就来介绍了一下在Python中使用AOP实现Redis缓存示例,小伙伴们一起来了解一下 import redis enable=True #enable=False def readRedis(key): if enable: r = redis.Redis(host='10.224.38.31', port=8690,db=0, password='xxxx') val = r.get(key) if val is None: pri

  • Python缓存技术实现过程详解

    一段非常简单代码 普通调用方式 def console1(a, b): print("进入函数") return (a, b) print(console1(3, 'a')) print(console1(2, 'b')) print(console1(3.0, 'a')) 很简单的一段代码,传入两个参数.然后打印输出.输出结果 进入函数 (3, 'a') 进入函数 (2, 'b') 进入函数 (3.0, 'a') 使用某个装饰器后 接下来我们引入functools模块的lru_cac

  • Python爬虫DNS解析缓存方法实例分析

    本文实例讲述了Python爬虫DNS解析缓存方法.分享给大家供大家参考,具体如下: 前言: 这是Python爬虫中DNS解析缓存模块中的核心代码,是去年的代码了,现在放出来 有兴趣的可以看一下. 一般一个域名的DNS解析时间在10~60毫秒之间,这看起来是微不足道,但是对于大型一点的爬虫而言这就不容忽视了.例如我们要爬新浪微博,同个域名下的请求有1千万(这已经不算多的了),那么耗时在10~60万秒之间,一天才86400秒.也就是说单DNS解析这一项就用了好几天时间,此时加上DNS解析缓存,效果就

  • 浅谈Python的Django框架中的缓存控制

    关于缓存剩下的问题是数据的隐私性以及在级联缓存中数据应该在何处储存的问题. 通常用户将会面对两种缓存: 他或她自己的浏览器缓存(私有缓存)以及他或她的提供者缓存(公共缓存). 公共缓存由多个用户使用,而受其他某人的控制. 这就产生了你不想遇到的敏感数据的问题,比如说你的银行账号被存储在公众缓存中. 因此,Web 应用程序需要以某种方式告诉缓存那些数据是私有的,哪些是公共的. 解决方案是标示出某个页面缓存应当是私有的. 要在 Django 中完成此项工作,可使用 cache_control 视图修

  • Python实现以时间换空间的缓存替换算法

    缓存是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度很快.缓存就是把一些数据暂时存放于某些地方,可能是内存,也有可能硬盘. 在使用Scrapy爬网站的时候,产生出来的附加产物,因为在Scrapy爬取的时候,CPU的运行时间紧迫度不高(访问频次太高容易被封禁),借此机会难得来上一下,让自己的内存解放一下. 算法原理: 通过将要缓存的数据用二进制展开,得到的二进制数据映射到缓存字段上,要检验是否已经缓存过,仅需要去查找对应的映射位置即可,如果全部匹配上,则已经缓存. # 二进制

  • Python的Flask框架使用Redis做数据缓存的配置方法

    Redis是一款依据BSD开源协议发行的高性能Key-Value存储系统.会把数据读入内存中提高存取效率.Redis性能极高能支持超过100K+每秒的读写频率,还支持通知key过期等等特性,所以及其适合做缓存. 下载安装 根据redis中文网使用wget下载压缩包 $ wget http://download.redis.io/releases/redis-3.0.5.tar.gz $ tar xzf redis-3.0.5.tar.gz $ cd redis-3.0.5 $ make 二进制文

  • Python中整数的缓存机制讲解

    在python中,如下代码结果一定不会让你吃惊: Python 3.3.2 (v3.3.2:d047928ae3f6, May 16 2013, 00:06:53) [MSC v.1600 64 bit (AMD64)] on win32 Type "copyright", "credits" or "license()" for more information. >>> a=345 >>> b=a >

  • 对python中的logger模块全面讲解

    logging模块介绍 Python的logging模块提供了通用的日志系统,熟练使用logging模块可以方便开发者开发第三方模块或者是自己的Python应用.同样这个模块提供不同的日志级别,并可以采用不同的方式记录日志,比如文件,HTTP.GET/POST,SMTP,Socket等,甚至可以自己实现具体的日志记录方式.下文我将主要介绍如何使用文件方式记录log. logging模块包括logger,handler,filter,formatter这四个基本概念. logging模块与log4

  • Python代码块及缓存机制原理详解

    这篇文章主要介绍了Python代码块及缓存机制原理详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.相同的字符串在Python中地址相同 s1 = 'panda' s2 = 'panda' print(s1 == s2) #True print(id(s1) == id (s2)) #True 2.代码块: 所有的代码都需要依赖代码块执行. ​ 一个模块,一个函数,一个类,一个文件等都是一个代码块 ​ 交互式命令中, 一行就是一个代码块

  • 浅析Python中字符串的intern机制

    intern机制: 字符串类型作为Python中最常用的数据类型之一,Python解释器为了提高字符串使用的效率和使用性能,做了很多优化,例如:Python解释器中使用了 intern(字符串驻留)的技术来提高字符串效率,什么是intern机制?即值同样的字符串对象仅仅会保存一份,放在一个字符串储蓄池中,是共用的,当然,肯定不能改变,这也决定了字符串必须是不可变对象. 简单原理: 实现 Intern 机制的方式非常简单,就是通过维护一个字符串储蓄池,这个池子是一个字典结构,如果字符串已经存在于池

  • python中numpy.empty()函数实例讲解

    在使用python编程的过程中,想要快速的创建ndarray数组,可以使用numpy.empty()函数.numpy.empty()函数所创建的数组内所有元素均为空,没有实际意义,所以它也是创建数组最快的方法.本文介绍python中numpy.empty()函数的使用方法. 1.numpy.empty()函数 这个函数可以创建一个没有任何具体值的ndarray数组,是创建数组最快的方法. 根据给定的维度和数值类型返回一个新的数组,其元素不进行初始化. 2.用法 import numpy as n

  • requests在python中发送请求的实例讲解

    当我们想给服务器发送一些请求时,可以选择requests库来实现.相较于其它库而言,这种库的使用还是非常适合新手使用的.本篇要讲的是requests.get请求方法,这里需要先对get请求时的一些参数进行学习,在掌握了基本的用法后,可以就下面的requests.get请求实例进一步的探究. 1.get请求的部分参数 (1) url(请求的url地址,必需 ) import requests url="http://www.baidu.com" resp=requests.get(url

  • python中if嵌套命令实例讲解

    一.嵌套命令计算机执行的顺序 缩进相同的命令处于同一个等级,第一步,计算机就要按顺序一条一条地执行命令. 1.先给score赋值: 2.因为if和else是只能留一个的互斥关系,if和else下的代码块只会执行一个,所以计算机要判断赋值的内容满足[score>=60]还是[score<60]的条件--如果满足if的条件,就执行if缩进下的内容. 二.if嵌套 if嵌套就是指,在已经有的if条件下在内部在写一个if条件. score=26 if score>=60: print('你已经及

  • python中if-elif-else语句实例用法讲解

    1.判断多个条件的语句,if为真则执行if后面的语句. 2.如果elif是真的,则执行elif,后面的代码块不执行. 3.如果if和elif不满意,执行else语句. 实例 if expression: statements... elif expression: statements... # 可以有1条或多条elif语句 else: statement... 知识点扩充: 有的时候,一个 if - else - 还不够用.比如,根据年龄的划分: 条件1:18岁或以上:adult 条件2:6岁

  • Python中字典的缓存池

    目录 PyDictObject缓存池 PyDictKeysObject缓存池 小结 前言: 我们知道字典里面有一个ma_keys和ma_values,其中ma_keys是一个指向PyDictKeysObject的指针,ma_values是一个指向PyObject *数组的二级指针.当哈希表为分离表时,键由ma_keys维护,值由ma_values维护:当哈希表为结合表时,键和值均由ma_keys维护. 那么当我们在销毁一个PyDictObject时,也肯定是要先释放ma_keys和ma_valu

  • python中的属性管理机制详解

    目录 一.私有属性 二.属性限制-__slots__方法 三.python中如何去声明变量 四.python中的有关属性 一.私有属性 Python并没有真正的私有化支持,但可用下划线得到伪私有,有一项大多数 Python 代码都遵循的习惯:带有下划线,前缀的名称应被视为非公开的 API 的一部分(无论是函数. 方法还是数据 成员) python中私有并没有实现真正的私有,只是在保存属性的时候改了个名字,在外部无法直接方法 私有属性具体表现为: _参数名 : 声明式私有属性 __参数名 : _类

随机推荐