使用tensorflow实现线性svm

本文实例为大家分享了tensorflow实现线性svm的具体代码,供大家参考,具体内容如下

简单方法:

import tensorflow as tf
import numpy as np

from matplotlib import pyplot as plt
def placeholder_input():

  x=tf.placeholder('float',shape=[None,2],name='x_batch')
  y=tf.placeholder('float',shape=[None,1],name='y_batch')
  return x,y
def get_base(_nx, _ny):
  _xf = np.linspace(x_min, x_max, _nx)
  _yf = np.linspace(y_min, y_max, _ny)
  xf1, yf1 = np.meshgrid(_xf, _yf)
  n_xf,n_yf=np.hstack((xf1)),np.hstack((yf1))
  return _xf, _yf,np.c_[n_xf.ravel(), n_yf.ravel()]
x_data=np.load('x.npy')
y1=np.load('y.npy')

y_data=np.reshape(y1,[200,1])
step=10000
tol=1e-3

x,y=placeholder_input()
w = tf.Variable(np.ones([2,1]), dtype=tf.float32, name="w_v")
b = tf.Variable(0., dtype=tf.float32, name="b_v")

y_pred =tf.matmul(x,w)+b
y_predict =tf.sign( tf.matmul(x,w)+b )
# cost = ∑_(i=1)^N max⁡(1-y_i⋅(w⋅x_i+b),0)+1/2 + 0.5 * ‖w‖^2
cost = tf.nn.l2_loss(w)+tf.reduce_sum(tf.maximum(1-y*y_pred,0))

train_step = tf.train.AdamOptimizer(0.01).minimize(cost)

with tf.Session() as sess:

  sess.run(tf.global_variables_initializer())
  for i in range(step):

    sess.run(train_step,feed_dict={x:x_data,y:y_data})
    y_p,y_p1,loss,w_value,b_value=sess.run([y_predict,y_pred,cost,w,b],feed_dict={x:x_data,y:y_data})

x_min, y_min = np.minimum.reduce(x_data,axis=0) -2
x_max, y_max = np.maximum.reduce(x_data,axis=0) +2

xf, yf , matrix_= get_base(200, 200)

#xy_xf, xy_yf = np.meshgrid(xf, yf, sparse=True)

z=np.sign(np.matmul(matrix_,w_value)+b_value).reshape((200,200))

plt.pcolormesh(xf, yf, z, cmap=plt.cm.Paired)

for i in range(200):

  if y_p[i,0]==1.0:
    plt.scatter(x_data[i,0],x_data[i,1],color='r')
  else:
    plt.scatter(x_data[i,0],x_data[i,1],color='g')

plt.axis([x_min,x_max,y_min ,y_max])
#plt.contour(xf, yf, z)
plt.show()

进阶:

import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt

class SVM():
  def __init__(self):
    self.x=tf.placeholder('float',shape=[None,2],name='x_batch')
    self.y=tf.placeholder('float',shape=[None,1],name='y_batch')
    self.sess=tf.Session()
  @staticmethod
  def get_base(self,_nx, _ny):
    _xf = np.linspace(self.x_min, self.x_max, _nx)
    _yf = np.linspace(self.y_min, self.y_max, _ny)
    n_xf, n_yf = np.meshgrid(_xf, _yf)
    return _xf, _yf,np.c_[n_xf.ravel(), n_yf.ravel()]
  def readdata(self):

    x_data=np.load('x.npy')
    y1=np.load('y.npy')
    y_data=np.reshape(y1,[200,1])
    return x_data ,y_data

  def train(self,step,x_data,y_data):

    w = tf.Variable(np.ones([2,1]), dtype=tf.float32, name="w_v")
    b = tf.Variable(0., dtype=tf.float32, name="b_v")

    self.y_pred =tf.matmul(self.x,w)+b 

    cost = tf.nn.l2_loss(w)+tf.reduce_sum(tf.maximum(1-self.y*self.y_pred,0))
    train_step = tf.train.AdamOptimizer(0.01).minimize(cost)

    self.y_predict =tf.sign( tf.matmul(self.x,w)+b )
    self.sess.run(tf.global_variables_initializer())
    for i in range(step):
      self.sess.run(train_step,feed_dict={self.x:x_data,self.y:y_data})
      self.y_predict_value,self.w_value,self.b_value,cost_value=self.sess.run([self.y_predict,w,b,cost],feed_dict={self.x:x_data,self.y:y_data})
      print('**********cost=%f***********'%cost_value)
  def predict(self,y_data):    

    correct = tf.equal(self.y_predict_value, y_data)

    precision=tf.reduce_mean(tf.cast(correct, tf.float32)) 

    precision_value=self.sess.run(precision)
    return precision_value

  def drawresult(self,x_data):

    self.x_min, self.y_min = np.minimum.reduce(x_data,axis=0) -2
    self.x_max, self.y_max = np.maximum.reduce(x_data,axis=0) +2

    xf, yf , matrix_= self.get_base(self,200, 200)

    w_value=self.w_value
    b_value=self.b_value
    print(w_value,b_value)
    z=np.sign(np.matmul(matrix_,self.w_value)+self.b_value).reshape((200,200))

    plt.pcolormesh(xf, yf, z, cmap=plt.cm.Paired)

    for i in range(200):

      if self.y_predict_value[i,0]==1.0:
        plt.scatter(x_data[i,0],x_data[i,1],color='r')
      else:
        plt.scatter(x_data[i,0],x_data[i,1],color='g')

    plt.axis([self.x_min,self.x_max,self.y_min ,self.y_max])
    #plt.contour(xf, yf, z)
    plt.show()     

svm=SVM()
x_data,y_data=svm.readdata()
svm.train(5000,x_data,y_data)
precision_value=svm.predict(y_data)
svm.drawresult(x_data)

没有数据的可以用这个

import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt

class SVM():
  def __init__(self):
    self.x=tf.placeholder('float',shape=[None,2],name='x_batch')
    self.y=tf.placeholder('float',shape=[None,1],name='y_batch')
    self.sess=tf.Session()

  def creat_dataset(self,size, n_dim=2, center=0, dis=2, scale=1, one_hot=False):
    center1 = (np.random.random(n_dim) + center - 0.5) * scale + dis
    center2 = (np.random.random(n_dim) + center - 0.5) * scale - dis
    cluster1 = (np.random.randn(size, n_dim) + center1) * scale
    cluster2 = (np.random.randn(size, n_dim) + center2) * scale
    x_data = np.vstack((cluster1, cluster2)).astype(np.float32)
    y_data = np.array([1] * size + [-1] * size)
    indices = np.random.permutation(size * 2)
    x_data, y_data = x_data[indices], y_data[indices]
    y_data=np.reshape(y_data,(y_data.shape[0],1))
    if not one_hot:
      return x_data, y_data
    y_data = np.array([[0, 1] if label == 1 else [1, 0] for label in y_data], dtype=np.int8)
    return x_data, y_data

  @staticmethod
  def get_base(self,_nx, _ny):
    _xf = np.linspace(self.x_min, self.x_max, _nx)
    _yf = np.linspace(self.y_min, self.y_max, _ny)
    n_xf, n_yf = np.meshgrid(_xf, _yf)
    return _xf, _yf,np.c_[n_xf.ravel(), n_yf.ravel()]
#  def readdata(self):
#
#    x_data=np.load('x.npy')
#    y1=np.load('y.npy')
#    y_data=np.reshape(y1,[200,1])
#    return x_data ,y_data

  def train(self,step,x_data,y_data):

    w = tf.Variable(np.ones([2,1]), dtype=tf.float32, name="w_v")
    b = tf.Variable(0., dtype=tf.float32, name="b_v")

    self.y_pred =tf.matmul(self.x,w)+b 

    cost = tf.nn.l2_loss(w)+tf.reduce_sum(tf.maximum(1-self.y*self.y_pred,0))
    train_step = tf.train.AdamOptimizer(0.01).minimize(cost)

    self.y_predict =tf.sign( tf.matmul(self.x,w)+b )
    self.sess.run(tf.global_variables_initializer())
    for i in range(step):
      index=np.random.permutation(y_data.shape[0])
      x_data1, y_data1 = x_data[index], y_data[index]
      self.sess.run(train_step,feed_dict={self.x:x_data1[0:50],self.y:y_data1[0:50]})
      self.y_predict_value,self.w_value,self.b_value,cost_value=self.sess.run([self.y_predict,w,b,cost],feed_dict={self.x:x_data,self.y:y_data})
      if i%1000==0:print('**********cost=%f***********'%cost_value)
  def predict(self,y_data):    

    correct = tf.equal(self.y_predict_value, y_data)

    precision=tf.reduce_mean(tf.cast(correct, tf.float32)) 

    precision_value=self.sess.run(precision)
    return precision_value, self.y_predict_value

  def drawresult(self,x_data):

    self.x_min, self.y_min = np.minimum.reduce(x_data,axis=0) -2
    self.x_max, self.y_max = np.maximum.reduce(x_data,axis=0) +2

    xf, yf , matrix_= self.get_base(self,200, 200)

    print(self.w_value,self.b_value)
    z=np.sign(np.matmul(matrix_,self.w_value)+self.b_value).reshape((200,200))
    plt.pcolormesh(xf, yf, z, cmap=plt.cm.Paired)

    for i in range(x_data.shape[0]):

      if self.y_predict_value[i,0]==1.0:
        plt.scatter(x_data[i,0],x_data[i,1],color='r')
      else:
        plt.scatter(x_data[i,0],x_data[i,1],color='g')

    plt.axis([self.x_min,self.x_max,self.y_min ,self.y_max])
#    plt.contour(xf, yf, z)
    plt.show()     

svm=SVM()
x_data,y_data=svm.creat_dataset(size=200, n_dim=2, center=0, dis=4, one_hot=False)

svm.train(5000,x_data,y_data)
precision_value,y_predict_value=svm.predict(y_data)
svm.drawresult(x_data)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • TensorFlow实现iris数据集线性回归

    本文将遍历批量数据点并让TensorFlow更新斜率和y截距.这次将使用Scikit Learn的内建iris数据集.特别地,我们将用数据点(x值代表花瓣宽度,y值代表花瓣长度)找到最优直线.选择这两种特征是因为它们具有线性关系,在后续结果中将会看到.本文将使用L2正则损失函数. # 用TensorFlow实现线性回归算法 #---------------------------------- # # This function shows how to use TensorFlow to #

  • TensorFlow Session使用的两种方法小结

    TensorFlow Session 在TensorFlow中是通过session进行交互的,使用session有两种方法.下面通过一个简单的例子(两个矩阵相乘)说一下 {[3,1] 与{[5,2] 相乘 [1,2]} [2,4]} 代码 #encoding=utf-8 import tensorflow as tf matrix1 = tf.constant([[3,1],[1,2]]) matrix2 = tf.constant([[5,2],[2,4]]) product = tf.mat

  • tensorflow实现简单逻辑回归

    逻辑回归是机器学习中很简答的一个栗子,这篇文章就是要介绍如何使用tensorflow实现一个简单的逻辑回归算法. 逻辑回归可以看作只有一层网络的前向神经网络,并且参数连接的权重只是一个值,而非矩阵.公式为:y_predict=logistic(X*W+b),其中X为输入,W为输入与隐含层之间的权重,b为隐含层神经元的偏置,而logistic为激活函数,一般为sigmoid或者tanh, y_predict为最终预测结果. 逻辑回归是一种分类器模型,需要木便函数不断的优化参数,这里目标函数为y_p

  • python3.6.3安装图文教程 TensorFlow安装配置方法

    本文主要介绍Python3.6及TensorFlow的安装和配置流程. 一.Python官网下载自己电脑和系统对应的Python安装包. 网址:下载地址 一直往下拉到Files,这里我下载的是Windows x86-64 executable installer (注意:要装TensorFlow必须安装64位的Python,TensorFlow不支持32位)< 二.下载python-3.6.3-amd64.exe应用程序 下载完成后得到一个python-3.6.3-amd64.exe应用程序,右

  • Tensorflow使用支持向量机拟合线性回归

    支持向量机可以用来拟合线性回归. 相同的最大间隔(maximum margin)的概念应用到线性回归拟合.代替最大化分割两类目标是,最大化分割包含大部分的数据点(x,y).我们将用相同的iris数据集,展示用刚才的概念来进行花萼长度与花瓣宽度之间的线性拟合. 相关的损失函数类似于max(0,|yi-(Axi+b)|-ε).ε这里,是间隔宽度的一半,这意味着如果一个数据点在该区域,则损失等于0. # SVM Regression #---------------------------------

  • 使用TensorFlow实现SVM

    较基础的SVM,后续会加上多分类以及高斯核,供大家参考. Talk is cheap, show me the code import tensorflow as tf from sklearn.base import BaseEstimator, ClassifierMixin import numpy as np class TFSVM(BaseEstimator, ClassifierMixin): def __init__(self, C = 1, kernel = 'linear',

  • win10下tensorflow和matplotlib安装教程

    本文介绍了一系列安装教程,具体如下 1.安装Python 版本选择是3.5.1,因为网上有些深度学习实例用的就是这个版本,跟他们一样的话可以避免版本带来的语句规范问题 python的下载官网 2.安装easy_install 在Python的官网下载easy_install的安装包,下载地址 下载完成后解压zip,解压后双击setup.py,会跳出一个黑框闪一下,这时python目录下的scripts文件夹中有了easy_install的应用程序文件. 接下来配置环境变量:计算机→系统属性→高级

  • C++调用tensorflow教程

    目前深度学习越来越火,学习.使用tensorflow的相关工作者也越来越多.但是目前绝大部分的python都是拥有着丰富的python的API,而c++的API不够完善.这就导致绝大多是使用tensorflow的项目都是基于python. 如果项目是由c++编写,想调用python下的tensorflow?可参考本教程(tensorflow模型是CNN卷积神经网络) 具体步骤: 1.python环境 首先安装python,可以在Anaconda官网直接下载.记住python一定选择64bit,目

  • TensorFlow实现模型评估

    我们需要评估模型预测值来评估训练的好坏. 模型评估是非常重要的,随后的每个模型都有模型评估方式.使用TensorFlow时,需要把模型评估加入到计算图中,然后在模型训练完后调用模型评估. 在训练模型过程中,模型评估能洞察模型算法,给出提示信息来调试.提高或者改变整个模型.但是在模型训练中并不是总需要模型评估,我们将展示如何在回归算法和分类算法中使用它. 训练模型之后,需要定量评估模型的性能如何.在理想情况下,评估模型需要一个训练数据集和测试数据集,有时甚至需要一个验证数据集. 想评估一个模型时就

  • win10下python3.5.2和tensorflow安装环境搭建教程

    在win10环境下搭建python3.5.2和tensorflow平台,供大家参考,具体内容如下 操作步骤如下: 1.官网(https://www.python.org/ )下载python3.5.2  选择Downloads-Windows 选择64位executable installer 2.安装过程,双击.exe可执行文件(此步可参考安装教程:win10环境下python3.5安装步骤图文教程) 一路默认下去! 3.安装成功后打开cmd命令窗口 print("Hello World!&q

随机推荐