Python实现基于SVM的分类器的方法

本文代码来之《数据分析与挖掘实战》,在此基础上补充完善了一下~

代码是基于SVM的分类器Python实现,原文章节题目和code关系不大,或者说给出已处理好数据的方法缺失、源是图像数据更是不见踪影,一句话就是练习分类器(▼㉨▼メ)

源代码直接给好了K=30,就试了试怎么选的,挑选规则设定比较单一,有好主意请不吝赐教哟

# -*- coding: utf-8 -*-
"""
Created on Sun Aug 12 12:19:34 2018

@author: Luove
"""
from sklearn import svm
from sklearn import metrics
import pandas as pd
import numpy as np
from numpy.random import shuffle
#from random import seed
#import pickle #保存模型和加载模型
import os

os.getcwd()
os.chdir('D:/Analyze/Python Matlab/Python/BookCodes/Python数据分析与挖掘实战/图书配套数据、代码/chapter9/demo/code')
inputfile = '../data/moment.csv'
data=pd.read_csv(inputfile)

data.head()
data=data.as_matrix()
#seed(10)
shuffle(data) #随机重排,按列,同列重排,因是随机的每次运算会导致结果有差异,可在之前设置seed
n=0.8
train=data[:int(n*len(data)),:]
test=data[int(n*len(data)):,:]

#建模数据 整理
#k=30
m=100
record=pd.DataFrame(columns=['acurrary_train','acurrary_test'])
for k in range(1,m+1):
  # k特征扩大倍数,特征值在0-1之间,彼此区分度太小,扩大以提高区分度和准确率
  x_train=train[:,2:]*k
  y_train=train[:,0].astype(int)
  x_test=test[:,2:]*k
  y_test=test[:,0].astype(int)

  model=svm.SVC()
  model.fit(x_train,y_train)
  #pickle.dump(model,open('../tmp/svm1.model','wb'))#保存模型
  #model=pickle.load(open('../tmp/svm1.model','rb'))#加载模型
  #模型评价 混淆矩阵
  cm_train=metrics.confusion_matrix(y_train,model.predict(x_train))
  cm_test=metrics.confusion_matrix(y_test,model.predict(x_test))

  pd.DataFrame(cm_train,index=range(1,6),columns=range(1,6))
  accurary_train=np.trace(cm_train)/cm_train.sum()   #准确率计算
#  accurary_train=model.score(x_train,y_train)             #使用model自带的方法求准确率
  pd.DataFrame(cm_test,index=range(1,6),columns=range(1,6))
  accurary_test=np.trace(cm_test)/cm_test.sum()
  record=record.append(pd.DataFrame([accurary_train,accurary_test],index=['accurary_train','accurary_test']).T)

record.index=range(1,m+1)
find_k=record.sort_values(by=['accurary_train','accurary_test'],ascending=False) # 生成一个copy 不改变原变量
find_k[(find_k['accurary_train']>0.95) & (find_k['accurary_test']>0.95) & (find_k['accurary_test']>=find_k['accurary_train'])]
#len(find_k[(find_k['accurary_train']>0.95) & (find_k['accurary_test']>0.95)])
''' k=33
  accurary_train accurary_test
33    0.950617    0.95122
'''
''' 计算一下整体
 accurary_data
 0.95073891625615758
'''
k=33
x_train=train[:,2:]*k
y_train=train[:,0].astype(int)
model=svm.SVC()
model.fit(x_train,y_train)
model.score(x_train,y_train)
model.score(datax_train,datay_train)
datax_train=data[:,2:]*k
datay_train=data[:,0].astype(int)
cm_data=metrics.confusion_matrix(datay_train,model.predict(datax_train))
pd.DataFrame(cm_data,index=range(1,6),columns=range(1,6))
accurary_data=np.trace(cm_data)/cm_data.sum()
accurary_data

REF:

《数据分析与挖掘实战》

源代码及数据需要可自取:https://github.com/Luove/Data

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • SVM基本概念及Python实现代码

    SVM(support vector machine)支持向量机: 注意:本文不准备提到数学证明的过程,一是因为有一篇非常好的文章解释的非常好:支持向量机通俗导论(理解SVM的三层境界),另一方面是因为我只是个程序员,不是搞数学的(主要是因为数学不好.),主要目的是将SVM以最通俗易懂,简单粗暴的方式解释清楚. 线性分类: 先从线性可分的数据讲起,如果需要分类的数据都是线性可分的,那么只需要一根直线f(x)=wx+b就可以分开了,类似这样: 这种方法被称为:线性分类器,一个线性分类器的学习目标便

  • Python3.5 + sklearn利用SVM自动识别字母验证码方法示例

    前言 最近正在研究人工智能,为了加深对算法的理解,决定写个自动设别验证码的程序.看了看网上的demo,大部分都是python2的写法,而且验证码的识别都是用的数字做例子,那我就写个基于python3字母识别的程序,不过一路写下来碰到不少坑,大家感兴趣的话可以慢慢看. 图片识别有几个比较大的步骤是必须完成的: 1.有大量的验证码图片作为样本 2.图片要进行处理  流程是:灰度化==>二值化==>字符切割==>识别分类 3.图像识别要提取特征值,然后把图片二值化的数据当做样本做训练,最后基于

  • Python中支持向量机SVM的使用方法详解

    除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm. 一.导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明 skleran中集成了许多算法,其导入包的方式如下所示, 逻辑回归:from sklearn.linear_model import LogisticRegression 朴素贝叶斯:fro

  • Python SVM(支持向量机)实现方法完整示例

    本文实例讲述了Python SVM(支持向量机)实现方法.分享给大家供大家参考,具体如下: 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end: 结束 op1=>operation: 读入数据 op2=>operation: 格式化数据 cond=>condition: 是否达到迭代次数 op3=>operation: 寻找超平面分割最小间隔 ccond=>cond

  • 手把手教你python实现SVM算法

    什么是机器学习 (Machine Learning) 机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能.它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域. 机器学习的大致分类: 1)分类(模式识别):要求系统依据已知的分类知识对输入的未知模式(该模式的描述)作分析,以确定输入模式的类属,例如手写识别(识别是不是这个数). 2)问题求解:要求对于给定的目标状态,寻找一个将当前状态转换为目标状态的动作序

  • Python中使用支持向量机SVM实践

    在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解. (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等. (3)SVM一般

  • Python中使用支持向量机(SVM)算法

    在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解.   (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等.   (3)S

  • Python机器学习之SVM支持向量机

    SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集. SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的: 支持向量机通俗导论(理解SVM的3层境界) JULY大牛讲的是如此详细,由浅入深层层推进,以至于关于SVM的原理,我一个字都不想写了..强烈推荐. 还有一个比较通俗的简单版本的:手把手教你实现SVM算法 SVN原理比较复杂,但是思想很简单,一句话概括,就

  • python实现基于SVM手写数字识别功能

    本文实例为大家分享了SVM手写数字识别功能的具体代码,供大家参考,具体内容如下 1.SVM手写数字识别 识别步骤: (1)样本图像的准备. (2)图像尺寸标准化:将图像大小都标准化为8*8大小. (3)读取未知样本图像,提取图像特征,生成图像特征组. (4)将未知测试样本图像特征组送入SVM进行测试,将测试的结果输出. 识别代码: #!/usr/bin/env python import numpy as np import mlpy import cv2 print 'loading ...'

  • Python中的支持向量机SVM的使用(附实例代码)

    除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm. 一.导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html. skleran中集成了许多算法,其导入包的方式如下所示, 逻辑回归:from

随机推荐