Python多线程实现同步的四种方式

临界资源即那些一次只能被一个线程访问的资源,典型例子就是打印机,它一次只能被一个程序用来执行打印功能,因为不能多个线程同时操作,而访问这部分资源的代码通常称之为临界区。

锁机制

threading的Lock类,用该类的acquire函数进行加锁,用realease函数进行解锁

import threading
import time

class Num:
  def __init__(self):
    self.num = 0
    self.lock = threading.Lock()
  def add(self):
    self.lock.acquire()#加锁,锁住相应的资源
    self.num += 1
    num = self.num
    self.lock.release()#解锁,离开该资源
    return num

n = Num()
class jdThread(threading.Thread):
  def __init__(self,item):
    threading.Thread.__init__(self)
    self.item = item
  def run(self):
    time.sleep(2)
    value = n.add()#将num加1,并输出原来的数据和+1之后的数据
    print(self.item,value)

for item in range(5):
  t = jdThread(item)
  t.start()
  t.join()#使线程一个一个执行

当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“同步阻塞”(参见多线程的基本概念)。

直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。

信号量

信号量也提供acquire方法和release方法,每当调用acquire方法的时候,如果内部计数器大于0,则将其减1,如果内部计数器等于0,则会阻塞该线程,知道有线程调用了release方法将内部计数器更新到大于1位置。

import threading
import time
class Num:
  def __init__(self):
    self.num = 0
    self.sem = threading.Semaphore(value = 3)
    #允许最多三个线程同时访问资源

  def add(self):
    self.sem.acquire()#内部计数器减1
    self.num += 1
    num = self.num
    self.sem.release()#内部计数器加1
    return num

n = Num()
class jdThread(threading.Thread):
  def __init__(self,item):
    threading.Thread.__init__(self)
    self.item = item
  def run(self):
    time.sleep(2)
    value = n.add()
    print(self.item,value)

for item in range(100):
  t = jdThread(item)
  t.start()
  t.join()

条件判断

所谓条件变量,即这种机制是在满足了特定的条件后,线程才可以访问相关的数据。

它使用Condition类来完成,由于它也可以像锁机制那样用,所以它也有acquire方法和release方法,而且它还有wait,notify,notifyAll方法。

"""
一个简单的生产消费者模型,通过条件变量的控制产品数量的增减,调用一次生产者产品就是+1,调用一次消费者产品就会-1.
"""

"""
使用 Condition 类来完成,由于它也可以像锁机制那样用,所以它也有 acquire 方法和 release 方法,而且它还有
wait, notify, notifyAll 方法。
"""

import threading
import queue,time,random

class Goods:#产品类
  def __init__(self):
    self.count = 0
  def add(self,num = 1):
    self.count += num
  def sub(self):
    if self.count>=0:
      self.count -= 1
  def empty(self):
    return self.count <= 0

class Producer(threading.Thread):#生产者类
  def __init__(self,condition,goods,sleeptime = 1):#sleeptime=1
    threading.Thread.__init__(self)
    self.cond = condition
    self.goods = goods
    self.sleeptime = sleeptime
  def run(self):
    cond = self.cond
    goods = self.goods
    while True:
      cond.acquire()#锁住资源
      goods.add()
      print("产品数量:",goods.count,"生产者线程")
      cond.notifyAll()#唤醒所有等待的线程--》其实就是唤醒消费者进程
      cond.release()#解锁资源
      time.sleep(self.sleeptime)

class Consumer(threading.Thread):#消费者类
  def __init__(self,condition,goods,sleeptime = 2):#sleeptime=2
    threading.Thread.__init__(self)
    self.cond = condition
    self.goods = goods
    self.sleeptime = sleeptime
  def run(self):
    cond = self.cond
    goods = self.goods
    while True:
      time.sleep(self.sleeptime)
      cond.acquire()#锁住资源
      while goods.empty():#如无产品则让线程等待
        cond.wait()
      goods.sub()
      print("产品数量:",goods.count,"消费者线程")
      cond.release()#解锁资源

g = Goods()
c = threading.Condition()

pro = Producer(c,g)
pro.start()

con = Consumer(c,g)
con.start()

同步队列

put方法和task_done方法,queue有一个未完成任务数量num,put依次num+1,task依次num-1.任务都完成时任务结束。

import threading
import queue
import time
import random

'''
1.创建一个 Queue.Queue() 的实例,然后使用数据对它进行填充。
2.将经过填充数据的实例传递给线程类,后者是通过继承 threading.Thread 的方式创建的。
3.每次从队列中取出一个项目,并使用该线程中的数据和 run 方法以执行相应的工作。
4.在完成这项工作之后,使用 queue.task_done() 函数向任务已经完成的队列发送一个信号。
5.对队列执行 join 操作,实际上意味着等到队列为空,再退出主程序。
'''

class jdThread(threading.Thread):
  def __init__(self,index,queue):
    threading.Thread.__init__(self)
    self.index = index
    self.queue = queue

  def run(self):
    while True:
      time.sleep(1)
      item = self.queue.get()
      if item is None:
        break
      print("序号:",self.index,"任务",item,"完成")
      self.queue.task_done()#task_done方法使得未完成的任务数量-1

q = queue.Queue(0)
'''
初始化函数接受一个数字来作为该队列的容量,如果传递的是
一个小于等于0的数,那么默认会认为该队列的容量是无限的.
'''
for i in range(2):
  jdThread(i,q).start()#两个线程同时完成任务

for i in range(10):
  q.put(i)#put方法使得未完成的任务数量+1

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python多线程同步Lock、RLock、Semaphore、Event实例

    一.多线程同步 由于CPython的python解释器在单线程模式下执行,所以导致python的多线程在很多的时候并不能很好地发挥多核cpu的资源.大部分情况都推荐使用多进程. python的多线程的同步与其他语言基本相同,主要包含: Lock & RLock :用来确保多线程多共享资源的访问. Semaphore : 用来确保一定资源多线程访问时的上限,例如资源池.  Event : 是最简单的线程间通信的方式,一个线程可以发送信号,其他的线程接收到信号后执行操作. 二.实例 1)Lock &a

  • Python多线程实现同步的四种方式

    临界资源即那些一次只能被一个线程访问的资源,典型例子就是打印机,它一次只能被一个程序用来执行打印功能,因为不能多个线程同时操作,而访问这部分资源的代码通常称之为临界区. 锁机制 threading的Lock类,用该类的acquire函数进行加锁,用realease函数进行解锁 import threading import time class Num: def __init__(self): self.num = 0 self.lock = threading.Lock() def add(s

  • linux下实现web数据同步的四种方式(性能比较)

    实现web数据同步的四种方式 ======================================= 1.nfs实现web数据共享2.rsync +inotify实现web数据同步3.rsync+sersync更快更节约资源实现web数据同步4.unison+inotify实现web数据双向同步 ======================================= 一.nfs实现web数据共享 nfs能实现数据同步是通过NAS(网络附加存储),在服务器上共享一个文件,且服务器需

  • C++实现线程同步的四种方式总结

    目录 内核态 互斥变量 事件对象 资源信号量 用户态 关键代码 内核态 互斥变量 互斥对象包含一个使用数量,一个线程ID和一个计数器.其中线程ID用于标识系统中的哪个线程当前拥有互斥对象,计数器用于指明该线程拥有互斥对象的次数. 创建互斥对象:调用函数CreateMutex.调用成功,该函数返回所创建的互斥对象的句柄. 请求互斥对象所有权:调用函数WaitForSingleObject函数.线程必须主动请求共享对象的所有权才能获得所有权. 释放指定互斥对象的所有权:调用ReleaseMutex函

  • Python中引用传参四种方式介绍

    目录 引用传参一: ​引用传参二: ​​引用传参三: ​​引用传参四: 总结 引用传参一: ​​>>> a = 100 #这里的a是不可变类型 >>> def test(a): ... a+=a #这个式子有两层含义:1.这里可能是重新定义一个新的变量a,2.也有可能是修改a的值,但由于全局 #变量a不能修改,所以此处是重新定义了一个a: ... print("函数内:%d"%a) ... >>> test(a) 函数内:200 &

  • Python命令行参数化的四种方式详解

    目录 1. sys.argv 2. argparse 3. getopt 4. click 最后 大家好,在日常编写 Python 脚本的过程中,我们经常需要结合命令行参数传入一些变量参数,使项目使用更加的灵活方便 本篇文章我将罗列出构建 Python 命令行参数的 4 种常见方式 它们分别是: 内置 sys.argv 模块 内置 argparse 模块 内置 getopt 模块 第三方依赖库 click 1. sys.argv 构建命令行参数最简单.常见的方式是利用内置的「 sys.argv

  • python 实现socket服务端并发的四种方式

    多进程&多线程 服务端:多进程和多线程的开启方式相同. 缺点:<1> 由于Cpython的GIL,导致同一时间无法运行多个线程:<2> 不可能无限开进进程或线程 解决办法:多进程.concurrent.futures.ProcessPoolExecutor.线程池 import socket from multiprocessing import Process from threading import Thread class MyTcpServer: def __in

  • python 实现定时任务的四种方式

    用Python实现定时任务 有些时候我们需要每隔一段时间就要执行一段程序,或者是往复循环执行某一个任务.比如博主在上篇文章讲的爬虫一样,在实现对某个目标进行在线爬取的话,也需要用到实时任务. 用Python实现定时任务的四种方法 while True: + sleep() threading.Timer定时器 调度模块schedule 任务框架APScheduler 定时要完成的Task(简单定义下) import datetime def Task(): now = datetime.date

  • Java详解实现多线程的四种方式总结

    目录 前言 一.四种方式实现多线程 1.继承Thread类创建线程 2.实现Runnable接口创建线程 3.实现Callable接口 4.实现有返回结果的线程 二.多线程相关知识 1.Runnable 和 Callable 的区别 2.如何启动一个新线程.调用 start 和 run 方法的区别 3.线程相关的基本方法 4.wait()和 sleep()的区别 5.多线程原理 前言 Java多线程实现方式主要有四种: ① 继承Thread类.实现Runnable接口 ② 实现Callable接

  • 横向对比分析Python解析XML的四种方式

    在最初学习PYTHON的时候,只知道有DOM和SAX两种解析方法,但是其效率都不够理想,由于需要处理的文件数量太大,这两种方式耗时太高无法接受. 在网络搜索后发现,目前应用比较广泛,且效率相对较高的ElementTree也是一个比较多人推荐的算法,于是拿这个算法来实测对比,ElementTree也包括两种实现,一个是普通ElementTree(ET),一个是ElementTree.iterparse(ET_iter). 本文将对DOM.SAX.ET.ET_iter四种方式进行横向对比,通过处理相

  • Python函数中定义参数的四种方式

    Python中函数参数的定义主要有四种方式: 1. F(arg1,arg2,-) 这是最常见的定义方式,一个函数可以定义任意个参数,每个参数间用逗号分割,用这种方式定义的函数在调用的的时候也必须在函数名后的小括号里提供个数相等 的值(实际参数),而且顺序必须相同,也就是说在这种调用方式中,形参和实参的个数必须一致,而且必须一一对应,也就是说第一个形参对应这第一个实参.例如: 复制代码 代码如下: def a(x,y):print x,y 调用该函数,a(1,2)则x取1,y取2,形参与实参相对应

随机推荐