python numpy数组的索引和切片的操作方法

NumPy - 简介

NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。

Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的。 也开发了另一个包 Numarray ,它拥有一些额外的功能。 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包。 这个开源项目有很多贡献者。

NumPy 操作

使用NumPy,开发人员可以执行以下操作:

•数组的算数和逻辑运算。

•傅立叶变换和用于图形操作的例程。

•与线性代数有关的操作。 NumPy 拥有线性代数和随机数生成的内置函数。

numpy库多维数组的类型和列表的类型非常类似,同样有索引和切片功能:

索引:获取数组中特定位置元素的过程

切片:获取数组元素子集的过程

1.一维数组

# 准备一个数组
arr1=np.array(np.arange(9))
arr1

array([0, 1, 2, 3, 4, 5, 6, 7, 8])

# 索引
arr[-1] #8
arr1[arr1.size-2] #7
arr1[arr1.size-9] #0
# 切片 :[start:end:step]
arr1[1:4] #左开右闭的区间
arr1[1:5:2] #array([1,3])
arr1[::-1] # 反向取所有,-1变成了步长

2.二维数组

# 准备一个二维数组
arr2=np.array([
 np.arange(1,4),
 np.arange(5,8)
])

arr2

array([[1, 2, 3],
 [5, 6, 7]])

# 索引
arr2[0][2] # 3
arr2[0,2] # 3
# 切片
arr2[0,] # array([1,2,3])
arr2[0,::] # 同上
arr2[0,0:3] #array([1,2])

3.多维数组

arr4=np.arange(1,25).reshape(2,3,4)
arr4

array([[[ 1, 2, 3, 4],
 [ 5, 6, 7, 8],
 [ 9, 10, 11, 12]],
 [[13, 14, 15, 16],
 [17, 18, 19, 20],
 [21, 22, 23, 24]]])

arr4[1][2][2] # 23
arr4[1,1,1] #18
arr3[1,1,] # array([17,18,19,20])
arr4[1,1,::] # 同上
arr4[1,1,::-1] # array([20, 19, 18, 17])
arr4[0,1:3]
#array([[ 5, 6, 7, 8],
  #[ 9, 10, 11, 12]])
arr4[:1,1] #array([ 6, 18])
b[1,:,2] #array([15, 19, 23])
b[1,...]
#array([[13, 14, 15, 16],
 # [17, 18, 19, 20],
 # [21, 22, 23, 24]])
b[0,::-1,-1] #array([12, 8, 4])
b[:,:,-1][::-1][:,-1] #array([24, 12])

总结

以上所述是小编给大家介绍的python numpy数组的索引和切片的操作方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • NumPy 基本切片和索引的具体使用方法

    索引和切片是NumPy中最重要最常用的操作.熟练使用NumPy切片操作是数据处理和机器学习的前提,所以一定要掌握好. 文档:https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html 索引 ndarrays可以使用标准Python x[obj]语法对其进行索引 ,其中x是数组,obj是选择方式.有三种可用的索引:字段访问,基本切片,高级索引.究竟是哪一个取决于obj. 注意 在Python中,x[(exp1, exp2, ...

  • numpy中索引和切片详解

    索引和切片 一维数组 一维数组很简单,基本和列表一致. 它们的区别在于数组切片是原始数组视图(这就意味着,如果做任何修改,原始都会跟着更改). 这也意味着,如果不想更改原始数组,我们需要进行显式的复制,从而得到它的副本(.copy()). import numpy as np #导入numpy arr = np.arange(10) #类似于list的range() arr Out[3]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[4] #索引(注意是从

  • python numpy数组的索引和切片的操作方法

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 "Numeric Python". 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的. 也开发了另一个包 Numarray ,它拥有一些额外的功能. 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包. 这个开源项目有很多贡献者. NumPy 操作 使用Nu

  • Python Numpy学习之索引及切片的使用方法

    目录 1. 索引及切片 2. 高级索引 1. 索引及切片 数组中的元素可以通过索引以及切片的手段进行访问或者修改,和列表的切片操作一样. 下面直接使用代码进行实现,具体操作方式以及意义以代码注释为准: (1)通过下标以及内置函数进行索引切片 """ Author:XiaoMa date:2021/12/30 """ import numpy as np a = np.arange(10)#创建一个从0-9的一维数组 print(a) i = sl

  • python中ndarray数组的索引和切片的使用

    索引和切片相当于是对数组中内容的读(read)或者查询(inquiry).是我们获取有用信息(demanded infomation)的重要方法. 对于索引 对于1维数组:在数组名的后面用中括号[]包括索引编号,括号中填写所查询数组的编码.比如:data[1] 对于n维数组:有两种方式 第一种:用列表表示所查询数的坐标值,如data_2dim[1,0] 第二种:把多维数组看成一位数组套娃,依次取值,如data_2dim[1][0] 对于切片 对于1维数组:在数组名后加上中括号[],在括号中填写切

  • Python numpy ndarray属性,索引,切片

    目录 一.ndarray 的重要属性 二.切片 1. 一维切片 1. 二维切片 三.索引 1. 一维数组索引 2. 二维数组索引 3. 布尔索引 4. 非运算 5. 或运算 6. 与运算 一.ndarray 的重要属性 dtype属性:返回ndarray数组的数据类型,数据类型的种类. ndim属性:返回数组维度的数量. shape属性:返回数组对象的尺度,对于矩阵,即n行m列,shape是一个元组(tuple). size属性:返回用来保存元素的数量,相当于shape中n×m的值. T属性:返

  • Python NumPy 数组索引的示例详解

    目录 前言 1.访问数组元素 2.访问 2-D Arrays(数组) 3.访问 3-D Arrays(数组) 4.负索引 前言 NumPy(Numerical Python的缩写)是一个开源的Python科学计算库.使用NumPy,就可以很自然地使用数组和矩阵.NumPy包含很多实用的数学函数,涵盖线性代数运算.傅里叶变换和随机数生成等功能.本文主要介绍Python NumPy 数组索引及访问数组元素. 1.访问数组元素 数组索引与访问数组元素相同. 您可以通过引用其索引号来访问数组元素. Nu

  • Python NumPy教程之索引详解

    目录 为什么我们需要 NumPy 使用索引数组进行索引 索引类型 基本切片和索引 高级索引 NumPy 或 Numeric Python 是一个用于计算同质 n 维数组的包.在 numpy 维度中称为轴. 为什么我们需要 NumPy 出现了一个问题,当 python 列表已经存在时,为什么我们需要 NumPy.答案是我们不能直接对两个列表的所有元素执行操作.例如,我们不能直接将两个列表相乘,我们必须逐个元素地进行.这就是 NumPy 发挥作用的地方. 示例 #1: # 演示需要 NumPy 的

  • Python Numpy 数组的初始化和基本操作

    Python 是一种高级的,动态的,多泛型的编程语言.Python代码很多时候看起来就像是伪代码一样,因此你可以使用很少的几行可读性很高的代码来实现一个非常强大的想法. 一.基础: Numpy的主要数据类型是ndarray,即多维数组.它有以下几个属性: ndarray.ndim:数组的维数 ndarray.shape:数组每一维的大小 ndarray.size:数组中全部元素的数量 ndarray.dtype:数组中元素的类型(numpy.int32, numpy.int16, and num

  • python基础知识之索引与切片详解

    目录 基本索引 嵌套索引 切片 numpy.array 索引 一维 numpy.array 索引 二维 pandas Series 索引 pandas DataFrame 索引 填坑 总结 基本索引 In [4]: sentence = 'You are a nice girl'In [5]: L = sentence.split()In [6]: LOut[6]: ['You', 'are', 'a', 'nice', 'girl'] # 从0开始索引In [7]: L[2]Out[7]: '

  • 对python numpy数组中冒号的使用方法详解

    python中冒号实际上有两个意思:1.默认全部选择:2. 指定范围. 下面看例子 定义数组 X=array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]) 输出为5x4二维数组 第一种意思,默认全部选择: 如,X[:,0]就是取矩阵X的所有行的第0列的元素,X[:,1] 就是取所有行的第1列的元素 第二种意思,指定范围,注意这里含左不含右 如,X[:, m:n]即取矩阵X的所有行中的的第m到n-1列数据,含左不含右

  • Python numpy数组转置与轴变换

    这篇文章主要介绍了Python numpy数组转置与轴变换,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 矩阵的转置 >>> import numpy as np >>> arr=np.arange(15).reshape((3,5)) >>> arr array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) >>&

随机推荐