Three.js开发实现3D地图的实践过程总结

前言

本文主要介绍Three.js的开发基础和基本原理,以及如何实现3D全景图。想在web端实现3D全景图的效果,除了全景图片、WebGL外,还需要处理很多细节。据我所知,目前国外3D全景图比较好的是KrPano,国内很多3D全景服务是在使用krpano的工具。

前段时间连续上了一个月班,加班加点完成了一个3D攻坚项目。也算是由传统web转型到webgl图形学开发中,坑不少,做了一下总结分享。

Three.js

基于简化WebGL开发复杂度和降低入门难度的目的,mrdoob)在WebGL标准基础上封装了一个轻量级的JS 3D库—— Three.js。

在我看来,Three.js具有以下特点:

  • 完备 具备3D开发所需完整功能,基本上使用WebGL能实现的效果,用Three.js都能更简单地实现
  • 易用 架构设计比较清晰和合理,易于理解,扩展性较好,且开发效率高于WebGL
  • 开源 项目开源,且有一批活跃的贡献者, 持续维护升级中

Three.js使WebGL更加好用,可以实现很棒的3D效果,比如:

  • 游戏 hellorun
  • 数据可视化 armsglobe

1、法向量问题

法线是垂直于我们想要照亮的物体表面的向量。法线代表表面的方向因此他们为光源和物体的交互建模中具有决定性作用。每一个顶点都有一个关联的法向量。

  

如果一个顶点被多个三角形共享,共享顶点的法向量等于共享顶点在不同的三角形中的法向量的和。N=N1+N2;

  

所以如果不做任何处理,直接将3维物体的点传递给BufferGeometry,那么由于法向量被合成,经过片元着色器插值后,就会得到这个黑不溜秋的效果

    

我的处理方式使顶点的法向量保持唯一,那么就需要在共享顶点处,拷贝一份顶点,并重新计算索引,是的每个被多个面共享的顶点都有多份,每一份有一个单独的法向量,这样就可以使得每个面都有一个相同的颜色  

2、光源与面块颜色  

开发过程中设计给了一套配色,然而一旦有光源,面块的最终颜色就会与光源混合,颜色自然与最终设计的颜色大相径庭。下面是Lambert光照模型的混合算法。

  

而且产品的要求是顶面保持设计的颜色,侧面需要加入光源变化效果,当对地图做操作时,侧面颜色需要根据视角发生变化。那么我的处理方式是将顶面与侧面分别绘制(创建两个Mesh),顶面使用MeshLambertMaterial的emssive属性设置自发光颜色与设计颜色保持一致,也就不会有光照效果,侧面综合使用Emssive与color来应用光源效果。  

  

var material1 = new __WEBPACK_IMPORTED_MODULE_0_three__["MeshLambertMaterial"]({
 emissive: new __WEBPACK_IMPORTED_MODULE_0_three__["Color"](style.fillStyle[0], style.fillStyle[1], style.fillStyle[2]),
 side: __WEBPACK_IMPORTED_MODULE_0_three__["DoubleSide"],
 shading: __WEBPACK_IMPORTED_MODULE_0_three__["FlatShading"],
 vertexColors: __WEBPACK_IMPORTED_MODULE_0_three__["VertexColors"]
 });

 var material2 = new __WEBPACK_IMPORTED_MODULE_0_three__["MeshLambertMaterial"]({
 color: new __WEBPACK_IMPORTED_MODULE_0_three__["Color"](style.fillStyle[0] * 0.1, style.fillStyle[1] * 0.1, style.fillStyle[2] * 0.1),
 emissive: new __WEBPACK_IMPORTED_MODULE_0_three__["Color"](style.fillStyle[0] * 0.9, style.fillStyle[1] * 0.9, style.fillStyle[2] * 0.9),
 side: __WEBPACK_IMPORTED_MODULE_0_three__["DoubleSide"],
 shading: __WEBPACK_IMPORTED_MODULE_0_three__["FlatShading"],
 vertexColors: __WEBPACK_IMPORTED_MODULE_0_three__["VertexColors"]
 });

3、POI标注

Three中创建始终朝向相机的POI可以使用Sprite类,同时可以将文字和图片绘制在canvas上,将canvas作为纹理贴图放到Sprite上。但这里的一个问题是canvas图像将会失真,原因是没有合理的设置sprite的scale,导致图片被拉伸或缩放失真。

问题的解决思路是要保证在3d世界中的缩放尺寸,经过一系列变换投影到相机屏幕后仍然与canvas在屏幕上的大小保持一致。这需要我们计算出屏幕像素与3d世界中的长度单位的比值,然后将sprite缩放到合适的3d长度。  

4、点击拾取问题  

webgl中3D物体绘制到屏幕将经过以下几个阶段  

  

所以要在3D应用做点击拾取,首先要将屏幕坐标系转化成ndc坐标系,这时候得到ndc的xy坐标,由于2d屏幕并没有z值所以,屏幕点转化成3d坐标的z可以随意取值,一般取0.5(z在-1到1之间

function fromSreenToNdc(x, y, container) {
 return {
 x: x / container.offsetWidth * 2 - 1,
 y: -y / container.offsetHeight * 2 + 1,
 z: 1
 };
}
function fromNdcToScreen(x, y, container) {
 return {
 x: (x + 1) / 2 * container.offsetWidth,
 y: (1 - y) / 2 * container.offsetHeight
 };
}

然后将ndc坐标转化成3D坐标:  ndc = P * MV * Vec4  Vec4 = MV-1 * P -1 * ndc  这个过程在Three中的Vector3类中已经有实现:

unproject: function () {

 var matrix = new Matrix4();

 return function unproject( camera ) {

 matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) );
 return this.applyMatrix4( matrix );

 };

 }(),

将得到的3d点与相机位置结合起来做一条射线,分别与场景中的物体进行碰撞检测。首先与物体的外包球进行相交性检测,与球不相交的排除,与球相交的保存进入下一步处理。将所有外包球与射线相交的物体按照距离相机远近进行排序,然后将射线与组成物体的三角形做相交性检测。求出相交物体。当然这个过程也由Three中的RayCaster做了封装,使用起来很简单:

mouse.x = ndcPos.x;
 mouse.y = ndcPos.y;

 this.raycaster.setFromCamera(mouse, camera);

 var intersects = this.raycaster.intersectObjects(this._getIntersectMeshes(floor, zoom), true);

5、性能优化

随着场景中的物体越来越多,绘制过程越来越耗时,导致手机端几乎无法使用。

在图形学里面有个很重要的概念叫“one draw all”一次绘制,也就是说调用绘图api的次数越少,性能越高。比如canvas中的fillRect、fillText等,webgl中的drawElements、drawArrays;所以这里的解决方案是对相同样式的物体,把它们的侧面和顶面统一放到一个BufferGeometry中。这样可以大大降低绘图api的调用次数,极大的提升渲染性能。

  

这样解决了渲染性能问题,然而带来了另一个问题,现在是吧所有样式相同的面放在一个BufferGeometry中(我们称为样式图形),那么在面点击时候就无法单独判断出到底是哪个物体(我们称为物体图形)被选中,也就无法对这个物体进行高亮缩放处理。我的处理方式是,把所有的物体单独生成物体图形保存在内存中,做面点击的时候用这部分数据来做相交性检测。对于选中物体后的高亮缩放处理,首先把样式面中相应部分裁减掉,然后把选中的物体图形加入到场景中,对它进行缩放高亮处理。裁剪方法是,记录每个物体在样式图形中的其实索引位置,在需要裁切时候将这部分索引制零。在需要恢复的地方在把这部分索引恢复成原状。

6、面点击移动到屏幕中央

这部分也是遇到了不少坑,首先的想法是:

面中心点目前是在世界坐标系内的坐标,先用center.project(camera)得到归一化设备坐标,在根据ndc得到屏幕坐标,而后根据面中心点屏幕坐标与屏幕中心点坐标做插值,得到偏移量,在根据OribitControls中的pan方法来更新相机位置。这种方式最终以失败告终,因为相机可能做各种变换,所以屏幕坐标的偏移与3d世界坐标系中的位置关系并不是线性对应的。  

最终的想法是:  

我们现在想将点击面的中心点移到屏幕中心,屏幕中心的ndc坐标永远都是(0,0)我们的观察视线与近景面的焦点的ndc坐标也是0,0;也就是说我们要将面中心点作为我们的观察点(屏幕的中心永远都是相机的观察视线),这里我们可以直接将面中心所谓视线的观察点,利用lookAt方法求取相机矩阵,但如果这样简单处理后的效果就会给人感觉相机的姿态变化了,也就是会感觉并不是平移过去的,所以我们要做的是保持相机当前姿态将面中心作为相机观察点。  

回想平移时我们将屏幕移动转化为相机变化的过程是知道屏幕偏移求target,这里我们要做的就是知道target反推屏幕偏移的过程。首先根据当前target与面中心求出相机的偏移向量,根据相机偏移向量求出在相机x轴和up轴的投影长度,根据投影长度就能返推出应该在屏幕上的平移量。 

this.unprojectPan = function(deltaVector, moveDown) {
 // var getProjectLength()
 var element = scope.domElement === document ? scope.domElement.body : scope.domElement;

 var cxv = new Vector3(0, 0, 0).setFromMatrixColumn(scope.object.matrix, 0);// 相机x轴
 var cyv = new Vector3(0, 0, 0).setFromMatrixColumn(scope.object.matrix, 1);// 相机y轴
 // 相机轴都是单位向量
 var pxl = deltaVector.dot(cxv)/* / cxv.length()*/; // 向量在相机x轴的投影
 var pyl = deltaVector.dot(cyv)/* / cyv.length()*/; // 向量在相机y轴的投影

 // offset=dx * vector(cx) + dy * vector(cy.project(xoz).normalize)
 // offset由相机x轴方向向量+相机y轴向量在xoz平面的投影组成
 var dv = deltaVector.clone();
 dv.sub(cxv.multiplyScalar(pxl));
 pyl = dv.length();

 if ( scope.object instanceof PerspectiveCamera ) {
 // perspective

 var position = scope.object.position;
 var offset = new Vector3(0, 0, 0);
 offset.copy(position).sub(scope.target);
 var distance = offset.length();
 distance *= Math.tan(scope.object.fov / 2 * Math.PI / 180);

 // var xd = 2 * distance * deltaX / element.clientHeight;
 // var yd = 2 * distance * deltaY / element.clientHeight;
 // panLeft( xd, scope.object.matrix );
 // panUp( yd, scope.object.matrix );

 var deltaX = pxl * element.clientHeight / (2 * distance);
 var deltaY = pyl * element.clientHeight / (2 * distance) * (moveDown ? -1 : 1);

 return [deltaX, deltaY];
 } else if ( scope.object instanceof OrthographicCamera ) {

 // orthographic
 // panLeft( deltaX * ( scope.object.right - scope.object.left ) / scope.object.zoom / element.clientWidth, scope.object.matrix );
 // panUp( deltaY * ( scope.object.top - scope.object.bottom ) / scope.object.zoom / element.clientHeight, scope.object.matrix );
 var deltaX = pxl * element.clientWidth * scope.object.zoom / (scope.object.right - scope.object.left);
 var deltaY = pyl * element.clientHeight * scope.object.zoom / (scope.object.top - scope.object.bottom);

 return [deltaX, deltaY];
 } else {

 // camera neither orthographic nor perspective
 console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.' );

 }
 }

7、2/3D切换

23D切换的主要内容就是当相机的视线轴与场景的平面垂直时,使用平行投影,这样用户只能看到顶面给人的感觉就是2D视图。所以要根据透视的视锥体计算出平行投影的世景体。

因为用户会在2D、3D场景下做很多操作,比如平移、缩放、旋转,要想无缝切换,这个关键在于将平行投影与视锥体相机的位置、lookAt方式保持一致;以及将他们放大缩小的关键点:distance的比例与zoom来保持一致。

平行投影中,zoom越大代表六面体的首尾两个面面积越小,放大越大。

8、3D中地理级别  

地理级别实际是像素跟墨卡托坐标系下米的对应关系,这个有通用的标准以及计算公式:

r=6378137
resolution=2*PI*r/(2^zoom*256)

各个级别中像素与米的对应关系如下:

resolution zoom 2048 blocksize 256 blocksize scale(dpi=160)
156543.0339 0 320600133.5 40075016.69 986097851.5
78271.51696 1 160300066.7 20037508.34 493048925.8
39135.75848 2 80150033.37 10018754.17 246524462.9
19567.87924 3 40075016.69 5009377.086 123262231.4
9783.939621 4 20037508.34 2504688.543 61631115.72
4891.96981 5 10018754.17 1252344.271 30815557.86
2445.984905 6 5009377.086 626172.1357 15407778.93
1222.992453 7 2504688.543 313086.0679 7703889.465
611.4962263 8 1252344.271 156543.0339 3851944.732
305.7481131 9 626172.1357 78271.51696 1925972.366
152.8740566 10 313086.0679 39135.75848 962986.1831
76.4370283 11 156543.0339 19567.87924 481493.0916
38.2185141 12 78271.51696 9783.939621 240746.5458
19.1092571 13 39135.75848 4891.96981 120373.2729
9.5546285 14 19567.87924 2445.984905 60186.63645
4.7773143 15 9783.939621 1222.992453 30093.31822
2.3886571 16 4891.96981 611.4962263 15046.65911
1.1943286 17 2445.984905 305.7481131 7523.329556
0.5971643 18 1222.992453 152.8740566 3761.664778
0.2985821 19 611.4962263 76.43702829 1880.832389
0.1492911 20 305.7481131 38.21851414 940.4161945
0.0746455 21
0.0373227 22

3D中的计算策略是,首先需要将3D世界中的坐标与墨卡托单位的对应关系搞清楚,如果已经是以mi来做单位,那么就可以直接将相机的投影屏幕的高度与屏幕的像素数目做比值,得出的结果跟上面的ranking做比较,选择不用的级别数据以及比例尺。注意3D地图中的比例尺并不是在所有屏幕上的所有位置与现实世界都满足这个比例尺,只能说是相机中心点在屏幕位置处的像素是满足这个关系的,因为平行投影有近大远小的效果。

9、poi碰撞

由于标注是永远朝着相机的,所以标注的碰撞就是把标注点转换到屏幕坐标系用宽高来计算矩形相交问题。至于具体的碰撞算法,大家可以在网上找到,这里不展开。下面是计算poi矩形的代码

export function getPoiRect(poi, zoomLevel, wrapper) {
 let style = getStyle(poi.styleId, zoomLevel);
 if (!style) {
 console.warn("style is invalid!");
 return;
 }
 let labelStyle = getStyle(style.labelid, zoomLevel);
 if (!labelStyle) {
 console.warn("labelStyle is invalid!");
 return;
 }
 if (!poi.text) {
 return;
 }
 let charWidth = (TEXTPROP.charWidth || 11.2) * // 11.2是根据测试得到的估值
 (labelStyle.fontSize / (TEXTPROP.fontSize || 13)); // 13是得到11.2时的fontSize
 // 返回2d坐标
 let x = 0;//poi.points[0].x;
 let y = 0;//-poi.points[0].z;
 let path = [];
 let icon = iconSet[poi.styleId];
 let iconWidh = (icon && icon.width) || 32;
 let iconHeight = (icon && icon.height) || 32;
 let multi = /\//g;
 let firstLinePos = [];
 let textAlign = null;
 let baseLine = null;
 let hOffset = (iconWidh / 2) * ICONSCALE;
 let vOffset = (iconHeight / 2) * ICONSCALE;
 switch(poi.direct) {
 case 2: { // 左
 firstLinePos.push(x - hOffset - 2);
 firstLinePos.push(y);
 textAlign = 'right';
 baseLine = 'middle';
 break;
 };
 case 3: { // 下
 firstLinePos.push(x);
 firstLinePos.push(y - vOffset - 2);
 textAlign = 'center';
 baseLine = 'top';
 break;
 };
 case 4: { // 上
 firstLinePos.push(x);
 firstLinePos.push(y + vOffset + 2);
 textAlign = 'center';
 baseLine = 'bottom';
 break;
 };
 case 1:{ // 右
 firstLinePos.push(x + hOffset + 2);
 firstLinePos.push(y);
 textAlign = 'left';
 baseLine = 'middle';
 break;
 };
 default: {
 firstLinePos.push(x);
 firstLinePos.push(y);
 textAlign = 'center';
 baseLine = 'middle';
 }
 }
 path = path.concat(firstLinePos);

 let minX = null, maxX = null;
 let minY = null, maxY = null;
 let parts = poi.text.split(multi);

 let textWidth = 0;
 if (wrapper) {
 // 汉字和数字的宽度是不同的,所以必须使用measureText来精确测量
 let textWidth1 = wrapper.context.measureText(parts[0]).width;
 let textWidth2 = wrapper.context.measureText(parts[1] || '').width;
 textWidth = Math.max(textWidth1, textWidth2);
 } else {
 textWidth = Math.max(parts[0].length, parts[1] ? parts[1].length : 0) * charWidth;
 }

 if (textAlign === 'left') {
 minX = x - hOffset;
 maxX = path[0] + textWidth; // 只用第一行文本
 } else if (textAlign === 'right') {
 minX = path[0] - textWidth;
 maxX = x + hOffset;
 } else { // center
 minX = x - Math.max(textWidth / 2, hOffset);
 maxX = x + Math.max(textWidth / 2, hOffset);
 }
 if (baseLine === 'top') {
 maxY = y + vOffset;
 minY = y - vOffset - labelStyle.fontSize * parts.length;
 } else if (baseLine === 'bottom') {
 maxY = y + vOffset + labelStyle.fontSize * parts.length;
 minY = y - vOffset;
 } else { // middle
 minY = Math.min(y - vOffset, path[1] - labelStyle.fontSize / 2);
 maxY = Math.max(y + vOffset, path[1] + labelStyle.fontSize * (parts.length + 0.5 - 1));
 }

 return {
 min: {
 x: minX,
 y: minY
 },
 max: {
 x: maxX,
 y: maxY
 }
 };
}

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

(0)

相关推荐

  • 使用3D引擎threeJS实现星空粒子移动效果

    three.js是JavaScript编写的WebGL第三方库.提供了非常多的3D显示功能.Three.js 是一款运行在浏览器中的 3D 引擎,你可以用它创建各种三维场景,包括了摄影机.光影.材质等各种对象. 下载地址: http://threejs.org/ 首先创建一个HTML文件,引入three.js引擎包. <!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <titl

  • three.js实现3D视野缩放效果

    首先,不再废话了,什么是three.js,是干什么的,知道的就是知道,不知道的就百度吧. 小编为大家推荐一篇:Three.js快速入门教程 昨儿发现three.js中的3D视野的缩小和放大效果可以用照相机的远近焦来实现. 缩小后: 这里采用的是透视照相机: //照相机配置 var fov = 40;//拍摄距离 var near = 1;//最小范围 var far = 1000;//最大范围 var camera = new THREE.PerspectiveCamera(fov, windo

  • 利用three.js画一个3D立体的正方体示例代码

    简介 three.js 是一款WebGL框架,WebGL可以让我们在canvas上实现3D效果.实现3D效果在国内来说还算是比较新的东西,可供查阅的资料也不多.这篇文章仅是一个入门篇,介绍如何绘制一个3D正方体. Three.js中的基本概念 Three.js包含3个基本概念:场景(Scene).相机(Camera)和渲染器(Renderer). 场景就是需要绘制的对象,相机代表取景的视角,渲染器是绘制的载体(可以挂靠到浏览器的DOM元素中), 也就是我们通过相机拍摄场景然后绘制到目标介质中去.

  • Three.js源码阅读笔记(Object3D类)

    这是Three.js源码阅读笔记的第二篇,直接开始. Core::Object3D Object3D似乎是Three.js框架中最重要的类,相当一部分其他的类都是继承自Object3D类,比如场景类.几何形体类.相机类.光照类等等:他们都是3D空间中的对象,所以称为Object3D类.Object3D构造函数如下: 复制代码 代码如下: THREE.Object3D = function () { THREE.Object3DLibrary.push( this ); this.id = THR

  • three.js中3D视野的缩放实现代码

    通过Threejs基础学习--修改版知道创建一个相机的相关知识点 var camera = new THREE.PerspectiveCamera( fov, aspect , near,far ); 视野角:fov 这里视野角(有的地方叫拍摄距离)越大,场景中的物体越小,视野角越小,场景中的物体越大 纵横比:aspect   (3d物体的宽/高比例) 相机离视体积最近的距离:near 相机离视体积最远的距离:far 其中fov视野角(拍摄距离)越大,场景中的物体越小.fov视野角(拍摄距离)越

  • Three.js的使用及绘制基础3D图形详解

    一. 前言 Three.js 是一款 webGL(3D绘图标准,在此不赘述)引擎,可以运行于所有支持 webGL 的浏览器.Three.js 封装了 webGL 底层的 API ,为我们提供了高级的开发接口,可以使用简单的代码去实现 3D 渲染.(官网:https://threejs.org/) 二. 为什么要选择Three.js? Three.js 作为原生 web3D 引擎,对插件式 web3D 引擎的优势不言而喻:不需要安装插件.在移动端支持好. Three.js 与其他原生 web3D

  • Three.js开发实现3D地图的实践过程总结

    前言 本文主要介绍Three.js的开发基础和基本原理,以及如何实现3D全景图.想在web端实现3D全景图的效果,除了全景图片.WebGL外,还需要处理很多细节.据我所知,目前国外3D全景图比较好的是KrPano,国内很多3D全景服务是在使用krpano的工具. 前段时间连续上了一个月班,加班加点完成了一个3D攻坚项目.也算是由传统web转型到webgl图形学开发中,坑不少,做了一下总结分享. Three.js 基于简化WebGL开发复杂度和降低入门难度的目的,mrdoob)在WebGL标准基础

  • JS开发中百度地图+城市联动实现实时触发查询地址功能

    缘由: 由于项目需要实现一个根据省市区+详细地址的路径进行查询地址的功能. 所用技术:百度地图API+jQuery 实现步骤: 1.省市区三级联动(ps:已经忘记这个小插件的出处的) 引入area.js /* * 全国三级城市联动 js版 */ function Dsy(){ this.Items = {}; } Dsy.prototype.add = function(id,iArray){ this.Items[id] = iArray; } Dsy.prototype.Exists = f

  • javascript 开发之百度地图使用到的js函数整理

     javascript 开发之百度地图使用到的js函数整理 接项目用到的地图,客户要求用百度地图,没办法只好用百度地图,这里总结一下,写的一些函数,注释比较详细! //创建和初始化地图函数: function initMap(){ createMap();//创建地图 setMapEvent();//设置地图事件 addMapControl();//向地图添加控件 addMarker();//向地图中添加marker } //创建地图函数: function createMap(){ var m

  • 基于Three.js制作一个3D中国地图

    目录 1.使用geoJson绘制3d地图 1.1 创建场景相关 1.2 根据json绘制地图 2.增加光照 3.增加阴影模糊 4.增加鼠标事件 5.渲染 6.动画效果 不想看繁琐步骤的,可以直接去github下载项目,如果可以顺便来个star哈哈 本项目使用vue-cli创建,但不影响使用,主要绘制都已封装成类 1.使用geoJson绘制3d地图 1.1 创建场景相关 // 创建webGL渲染器 this.renderer = new THREE.WebGLRenderer( { antiali

  • 分享五个Node.js开发的优秀实践 

    目录 1.分层组织代码 2.使用代码压缩 3.学会运用第三方解决方案 4.充分利用程序监控工具 5.保持你的代码整洁且易于复用 代码检查和格式化 代码风格指南 总结 前言: Node.js在全球开发者中非常流行,这种趋势极大地改变了Web开发的面貌.可以说,Node.js在实时Web应用开发中无所不能.使用这种技术并不难,懂得如何更好地构建代码结构,在开发过程中解决遇到的困难和错误,是你真正应该去做的事情. 在这篇文章中,我们列出了5个通用的优秀实践,需要我们在开发过程中牢记于心并尽可能的去实践

  • JS代码实现百度地图 画圆 删除标注

    把下面这段代码复制到百度地图的demo中运行,效果就是我想设计的效果. <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="viewport" content="initial-scale=1.0, user-sc

  • 微信小程序 开发MAP(地图)实例详解

    微信小程序 开发MAP(地图)实例详解 在创建MAP(地图)前,请各位小伙伴们认真的去了解微信小程序开发的说明. https://mp.weixin.qq.com/debug/wxadoc/dev/component/map.html#map 了解完MAP(地图)里的属性之后,接下来我们就来创建一个简单的MAP(地图)控件. 第一步:肯定是创建项目.起项目名.项目地址 PS:我这里以index的文件为名 第二步:我们来写 index.wxml 文件的代码 WXML文件代码: <map id=&quo

  • Android开发之高德地图实现定位

    在应用开发中,地图开发是经常需要使用的"组件",Google Map虽然有官方教程,无奈用不起来,原因你懂的~~那么国内比较出名的是就是百度地图和高德地图,由于个人喜好,所以选择了高德地图LBS,废话不说,上干货. 1.注册开发者,创建应用 这个几乎是所有开放平台都通用的做法,无外乎注册帐号,成为开发者,然后创建一个Android应用,会为你分配一个key绑定你的服务. 注册key.PNG 2.下载SDK,导入jar包,add to library jar包.PNG 第一个是2D地图的

  • 使用Vue.js开发微信小程序开源框架mpvue解析

    前言 mpvue是一款使用Vue.js开发微信小程序的前端框架.使用此框架,开发者将得到完整的 Vue.js 开发体验,同时为H5和小程序提供了代码复用的能力.如果想将 H5 项目改造为小程序,或开发小程序后希望将其转换为H5,mpvue将是十分契合的一种解决方案. 目前,mpvue已经在美团点评多个实际业务项目中得到了验证,因此我们决定将其开源,希望更多技术同行一起开发,应用到更广泛的场景里去.github项目地址请参见mpvue .使用文档请参见 http://mpvue.com/. 为了帮

  • 微信小程序JS加载esmap地图的实例详解

    一.在微信小程序里显示室内三维地图 需要满足的两个条件 调用ESMap室内地图需要用到小程序web-view组件,想要通过 web-view 调用ESMap室内地图需要满足以下 2 个条件: 1. 小程序是企业主体,微信 web-view 组件不对个人类型的小程序开放. 2. 您需要有一个自己的域名,在嵌入网页的时候需要在微信后台验证域名(只有自己域名下的网页才能被正确地显示哦,不能随便找一个公开链接). 二.具体实现步骤 1.域名验证: 由于微信平台的规定,web-view 指向的地址,必须是

随机推荐