全面解析Java中的GC与幽灵引用

Java 中一共有 4 种类型的引用 : StrongReference、 SoftReference、 WeakReference 以及 PhantomReference (传说中的幽灵引用 呵呵),
这 4 种类型的引用与 GC 有着密切的关系,  让我们逐一来看它们的定义和使用场景 :

1、 Strong Reference
StrongReference 是 Java 的默认引用实现,  它会尽可能长时间的存活于 JVM 内, 当没有任何对象指向它时 GC 执行后将会被回收

Java代码


代码如下:

@Test 
public void strongReference() { 
    Object referent = new Object();

/**
     * 通过赋值创建 StrongReference 
     */ 
    Object strongReference = referent;

assertSame(referent, strongReference);

referent = null; 
    System.gc();

/**
     * StrongReference 在 GC 后不会被回收
     */ 
    assertNotNull(strongReference); 
}

2、 WeakReference & WeakHashMap
WeakReference, 顾名思义,  是一个弱引用,  当所引用的对象在 JVM 内不再有强引用时, GC 后 weak reference 将会被自动回收


代码如下:

@Test 
public void weakReference() { 
    Object referent = new Object(); 
    WeakReference<Object> weakRerference = new WeakReference<Object>(referent);

assertSame(referent, weakRerference.get());

referent = null; 
    System.gc();

/**
     * 一旦没有指向 referent 的强引用, weak reference 在 GC 后会被自动回收
     */ 
    assertNull(weakRerference.get()); 
}

WeakHashMap 使用 WeakReference 作为 key, 一旦没有指向 key 的强引用, WeakHashMap 在 GC 后将自动删除相关的 entry


代码如下:

@Test 
public void weakHashMap() throws InterruptedException { 
    Map<Object, Object> weakHashMap = new WeakHashMap<Object, Object>(); 
    Object key = new Object(); 
    Object value = new Object(); 
    weakHashMap.put(key, value);

assertTrue(weakHashMap.containsValue(value));

key = null; 
    System.gc();

/**
     * 等待无效 entries 进入 ReferenceQueue 以便下一次调用 getTable 时被清理
     */ 
    Thread.sleep(1000);

/**
     * 一旦没有指向 key 的强引用, WeakHashMap 在 GC 后将自动删除相关的 entry
     */ 
    assertFalse(weakHashMap.containsValue(value)); 
}

3、SoftReference
SoftReference 于 WeakReference 的特性基本一致, 最大的区别在于 SoftReference 会尽可能长的保留引用直到 JVM 内存不足时才会被回收(虚拟机保证), 这一特性使得 SoftReference 非常适合缓存应用


代码如下:

@Test 
public void softReference() { 
    Object referent = new Object(); 
    SoftReference<Object> softRerference = new SoftReference<Object>(referent);

assertNotNull(softRerference.get());

referent = null; 
    System.gc();

/**
     *  soft references 只有在 jvm OutOfMemory 之前才会被回收, 所以它非常适合缓存应用
     */ 
    assertNotNull(softRerference.get()); 
}

4、 PhantomReference
作为本文主角, Phantom Reference(幽灵引用) 与 WeakReference 和 SoftReference 有很大的不同,  因为它的 get() 方法永远返回 null, 这也正是它名字的由来

Java代码


代码如下:

@Test 
public void phantomReferenceAlwaysNull() { 
    Object referent = new Object(); 
    PhantomReference<Object> phantomReference = new PhantomReference<Object>(referent, new ReferenceQueue<Object>());

/**
     * phantom reference 的 get 方法永远返回 null 
     */ 
    assertNull(phantomReference.get()); 
}

诸位可能要问, 一个永远返回 null 的 reference 要来何用,  请注意构造 PhantomReference 时的第二个参数 ReferenceQueue(事实上 WeakReference & SoftReference 也可以有这个参数),
PhantomReference 唯一的用处就是跟踪 referent  何时被 enqueue 到 ReferenceQueue 中.

5、 RererenceQueue
当一个 WeakReference 开始返回 null 时, 它所指向的对象已经准备被回收, 这时可以做一些合适的清理工作.   将一个 ReferenceQueue 传给一个 Reference 的构造函数, 当对象被回收时, 虚拟机会自动将这个对象插入到 ReferenceQueue 中, WeakHashMap 就是利用 ReferenceQueue 来清除 key 已经没有强引用的 entries.

Java代码


代码如下:

@Test 
public void referenceQueue() throws InterruptedException { 
    Object referent = new Object();      
    ReferenceQueue<Object> referenceQueue = new ReferenceQueue<Object>(); 
    WeakReference<Object> weakReference = new WeakReference<Object>(referent, referenceQueue);

assertFalse(weakReference.isEnqueued()); 
    Reference<? extends Object> polled = referenceQueue.poll(); 
    assertNull(polled);

referent = null; 
    System.gc();

assertTrue(weakReference.isEnqueued()); 
    Reference<? extends Object> removed = referenceQueue.remove(); 
    assertNotNull(removed); 
}

6、PhantomReference  vs WeakReference
PhantomReference  有两个好处, 其一, 它可以让我们准确地知道对象何时被从内存中删除, 这个特性可以被用于一些特殊的需求中(例如 Distributed GC,  XWork 和 google-guice 中也使用 PhantomReference 做了一些清理性工作).

其二, 它可以避免 finalization 带来的一些根本性问题, 上文提到 PhantomReference 的唯一作用就是跟踪 referent 何时被 enqueue 到 ReferenceQueue 中,  但是 WeakReference 也有对应的功能, 两者的区别到底在哪呢 ?

这就要说到 Object 的 finalize 方法, 此方法将在 gc 执行前被调用, 如果某个对象重载了 finalize 方法并故意在方法内创建本身的强引用,  这将导致这一轮的 GC 无法回收这个对象并有可能引起任意次 GC, 最后的结果就是明明 JVM 内有很多 Garbage 却 OutOfMemory, 使用 PhantomReference 就可以避免这个问题, 因为 PhantomReference 是在 finalize 方法执行后回收的,也就意味着此时已经不可能拿到原来的引用, 也就不会出现上述问题,  当然这是一个很极端的例子, 一般不会出现.

7、 对比



































Soft vs Weak vs Phantom References
Type Purpose Use When GCed Implementing Class
Strong Reference An ordinary reference. Keeps objects alive as long as they are referenced. normal reference. Any object not pointed to can be reclaimed. default
Soft Reference Keeps objects alive provided there's enough memory. to keep objects alive even after clients have removed their references (memory-sensitive caches), in case clients start asking for them again by key. After a first gc pass, the JVM decides it still needs to reclaim more space. java.lang.ref.SoftReference
Weak Reference Keeps objects alive only while they're in use (reachable) by clients. Containers that automatically delete objects no longer in use. After gc determines the object is only weakly reachable java.lang.ref.WeakReference 
java.util.WeakHashMap
Phantom Reference Lets you clean up after finalization but before the space is reclaimed (replaces or augments the use offinalize()) Special clean up processing After finalization. java.lang.ref.PhantomReference

8. 小结
一般的应用程序不会涉及到 Reference 编程, 但是了解这些知识会对理解 GC 的工作原理以及性能调优有一定帮助,在实现一些基础性设施比如缓存时也可能会用到, 希望本文能有所帮助。

(0)

相关推荐

  • Java中垃圾回收器GC对吞吐量的影响测试

    在看内存管理术语表的时候偶然发现了"Pig in the Python(注:有点像中文里的贪心不足蛇吞象)"的定义,于是便有了这篇文章.表面上看,这个术语说的是GC不停地将大对象从一个分代提升到另一个分代的情景.这么做就好比巨蟒整个吞食掉它的猎物,以至于它在消化的时候都没办法移动了. 在接下来的这24个小时里我的头脑中充斥着这个令人窒息的巨蟒的画面,挥之不去.正如精神病医生所说的,消除恐惧最好的方法就是说出来.于是便有了这篇文章.不过接下的故事我们要讲的不是蟒蛇,而是GC的调优.我对天

  • Java GC 机制与内存分配策略详解

    Java GC 机制与内存分配策略详解 收集算法是内存回收的方法论,垃圾收集器是内存回收的具体实现 自动内存管理解决的是:给对象分配内存 以及 回收分配给对象的内存 为什么我们要了解学习 GC 与内存分配呢? 在 JVM 自动内存管理机制的帮助下,不再需要为每一个new操作写配对的delete/free代码.但出现内存泄漏和溢出的问题时,如果不了解虚拟机是怎样使用内存的,那么排查错误将是一项非常艰难的工作. GC(垃圾收集器)在对堆进行回收前,会先确定哪些对象"存活",哪些已经&quo

  • 浅谈关于Java的GC垃圾回收器的一些基本概念

    一.基本回收算法 1. 引用计数(Reference Counting) 比较古老的回收算法.原理是此对象有一个引用,即增加一个计数,删除一个引用则减少一个计数.垃圾回收时,只用收集计数为0的对象.此算法最致命的是无法处理循环引用的问题. 2. 标记-清除(Mark-Sweep) 此算法执行分两阶段.第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除.此算法需要暂停整个应用,同时,会产生内存碎片. 3. 复制(Copying) 此算法把内存空间划为两个相等的区域

  • 浅析Java中的GC垃圾回收器的意义及与GC的交互

    对象是使用new创建的,但是并没有与之相对应的delete操作来回收对象占用的内存.当我们完成对某个对象的使用时,只需停止对该对象的引用:将我们的引用改变为指向其他对象或指向null;或者从方法中返回,使得该方法的局部变量不复存在,从而使得对这些局部变量的引用变为不指向任何对象.不再被引用的对象被称为垃圾(garbage),查找并回收这些对象的过程叫做垃圾回收(garbage collection) o Java虚拟机利用垃圾回收来保证被引用的对象将会在内存中保留,同时会释放在执行代码中通过任何

  • Java中GC的工作原理详细介绍

    Java中GC的工作原理 引子:面试时被问到垃圾回收机制,只是粗略的讲'程序员不能直接对内存操作,jvm负责对已经超过作用域的对象回收处理',面官表情呆滞,也就没再继续深入. 转文: 一个优秀的Java程序员必须了解GC的工作原理.如何优化GC的性能.如何与GC进行有限的交互,有一些应用程序对性能要求较高,例如嵌入式系统.实时系统等,只有全面提升内存的管理效率,才能提高整个应用程序的性能.本文将从GC的工作原理.GC的几个关键问题进行探讨,最后提出一些Java程序设计建议,如何从GC角度提高Ja

  • 深入了解Java GC的工作原理

    JVM学习笔记之JVM内存管理和JVM垃圾回收的概念,JVM内存结构由堆.栈.本地方法栈.方法区等部分组成,另外JVM分别对新生代下载地址  和旧生代采用不同的垃圾回收机制. 首先来看一下JVM内存结构,它是由堆.栈.本地方法栈.方法区等部分组成,结构图如下所示. JVM学习笔记 JVM内存管理和JVM垃圾回收 JVM内存组成结构 JVM内存结构由堆.栈.本地方法栈.方法区等部分组成,结构图如下所示: 1)堆 所有通过new创建的对象的内存都在堆中分配,其大小可以通过-Xmx和-Xms来控制.堆

  • 从JVM的内存管理角度分析Java的GC垃圾回收机制

    一个优秀的Java程序员必须了解GC的工作原理.如何优化GC的性能.如何与GC进行有限的交互,因为有一些应用程序对性能要求较高,例如嵌入式系统.实时系统等,只有全面提升内存的管理效率 ,才能提高整个应用程序的性能.本篇文章首先简单介绍GC的工作原理之后,然后再对GC的几个关键问题进行深入探讨,最后提出一些Java程序设计建议,从GC角度提高Java程序的性能.     GC的基本原理     Java的内存管理实际上就是对象的管理,其中包括对象的分配和释放.     对于程序员来说,分配对象使用

  • 全面解析Java中的GC与幽灵引用

    Java 中一共有 4 种类型的引用 : StrongReference. SoftReference. WeakReference 以及 PhantomReference (传说中的幽灵引用 呵呵), 这 4 种类型的引用与 GC 有着密切的关系,  让我们逐一来看它们的定义和使用场景 : 1. Strong ReferenceStrongReference 是 Java 的默认引用实现,  它会尽可能长时间的存活于 JVM 内, 当没有任何对象指向它时 GC 执行后将会被回收 Java代码

  • 实例解析Java中的构造器初始化

    1.初始化顺序 当Java创建一个对象时,系统先为该对象的所有实例属性分配内存(前提是该类已经被加载过了),接着程序开始对这些实例属性执行初始化,其初始化顺序是:先执行初始化块或声明属性时制定的初始值,再执行构造器里制定的初始值. 在类的内部,变量定义的先后顺序决定了初始化的顺序,即时变量散布于方法定义之间,它们仍就会在任何方法(包括构造器)被调用之前得到初始化. class Window { Window(int maker) { System.out.println("Window(&quo

  • 深入解析Java中反射中的invoke()方法

    先讲一下java中的反射: 反射就是将类别的各个组成部分进行剖析,可以得到每个组成部分,就可以对每一部分进行操作 反射机制应用场景:逆向代码.动态生成类框架等,使用反射机制能够大大的增强程序的扩展性. 反射的基本步骤:首先获得Class对象,然后实例化对象,获得类的属性.方法或者构造函数,最后访问属性.调用方法.调用构造函数创建对象.而invoke()方法就是用来执行指定对象的方法. 在比较复杂的程序或框架中来使用反射技术,可以简化代码提高程序的复用性. 讲的是Method类的invoke()方

  • 解析java中的condition

    一.condition 介绍及demo Condition是在java 1.5中才出现的,它用来替代传统的Object的wait().notify()实现线程间的协作,相比使用Object的wait().notify(),使用Condition的await().signal()这种方式实现线程间协作更加安全和高效.因此通常来说比较推荐使用Condition,阻塞队列实际上是使用了Condition来模拟线程间协作. Condition是个接口,基本的方法就是await()和signal()方法:

  • 解析Java中的static关键字

    一.static关键字使用场景 static关键字主要有以下5个使用场景: 1.1.静态变量 把一个变量声明为静态变量通常基于以下三个目的: 作为共享变量使用 减少对象的创建 保留唯一副本 第一种比较容易理解,由于static变量在内存中只会存在一个副本,所以其可以作为共享变量使用,比如要定义一个全局配置.进行全局计数.如: public class CarConstants { // 全局配置,一般全局配置会和final一起配合使用, 作为共享变量 public static final in

  • java中的GC收集器详情

    目录 1.GC(Garbage collection ) 2.GC算法 2.1标记活动对象 2.2 删除空闲对象 2.3 标记清除(Mark-Sweep) 2.4 清除压缩(Mark-Sweep-Compact) 2.5 标记和复制 3.JVM GC 3.1 JVM GC事件 3.2 Serial GC 3.3 Parallel GC 3.4 Concurrent Mark and Sweep 3.5 G1 –垃圾优先 4.总结 1.GC(Garbage collection ) 程序内存管理分

  • 一文解析Java中的方法重写

    目录 1.含义 2.为什么要使用方法重写 3.如何使用方法重写 3.1 基本语法 3.2 具体分析 3.3 方法重写的一些小技巧 1.含义 子类继承父类后,可以在子类中书写一个与父类同名同参的方法,从而实现对父类中同名同参数的方法的覆盖,我们把这一过程叫做方法的重写(override) 2.为什么要使用方法重写 2.1 当父类的方法满足不了子类的需求的时候,需要在子类中对该方法进行重写 2.2 题目与分析 例如存在一个父类Peple,子类Chinese,父类中有一个say()方法,输出人在说话,

  • 浅谈Java中对类的主动引用和被动引用

    本文研究的主要是Java中类的主动引用和被动引用,具体介绍如下. 主动引用,这里介绍的是主动引用的五种场景 1.遇到new,getstatic,putstatic,invokestatic这4条字节码指令时,类如果没初始化就会被初始化,创建对象,读取或设置静态字段,调用静态方法. 2.反射 3.子类初始化前会先初始化父类 4.包含main方法的类,虚拟机启动时会先初始化该类 5.使用jdk的动态语言支持时(不明) 被动引用: class SuperClass{ static{ syso("sup

  • Java中的值传递和引用传递实例介绍

    复制代码 代码如下: package Object.reference; public class People {     private String name;     private int age;     public People(){     }     public People(String name, int age) {         super();         this.name = name;         this.age = age;     }    

  • 全面解析Java中的引用类型

    如果一个内存中的对象没有任何引用的话,就说明这个对象已经不再被使用了,从而可以成为被垃圾回收的候选.不过由于垃圾回收器的运行时间不确定,可被垃圾回收的对象的实际被回收时间是不确定的.对于一个对象来说,只要有引用的存在,它就会一直存在于内存中.如果这样的对象越来越多,超出了JVM中的内存总数,JVM就会抛出OutOfMemory错误.虽然垃圾回收的具体运行是由JVM来控制的,但是开发人员仍然可以在一定程度上与垃圾回收器进行交互,其目的在于更好的帮助垃圾回收器管理好应用的内存.这种交互方式就是使用J

随机推荐