Python高级编程之消息队列(Queue)与进程池(Pool)实例详解

本文实例讲述了Python高级编程之消息队列(Queue)与进程池(Pool)。分享给大家供大家参考,具体如下:

Queue消息队列

1.创建

import multiprocessing
queue = multiprocessing.Queue(队列长度)

2.方法

方法 描述
put 变量名.put(数据),放入数据(如队列已满,则程序进入阻塞状态,等待队列取出后再放入)
put_nowait 变量名.put_nowati(数据),放入数据(如队列已满,则不等待队列信息取出后再放入,直接报错)
get 变量名.get(数据),取出数据(如队列为空,则程序进入阻塞状态,等待队列防如数据后再取出)
get_nowait 变量名.get_nowait(数据),取出数据(如队列为空,则不等待队列放入信息后取出数据,直接报错),放入数据后立马判断是否为空有时为True,原因是放入值和判断同时进行
qsize 变量名.qsize(),消息数量
empty 变量名.empty()(返回值为True或False),判断是否为空
full 变量名.full()(返回值为True或False),判断是否为满

3.进程通信

因为进程间不共享全局变量,所以使用Queue进行数据通信,可以在父进程中创建两个字进程,一个往Queue里写数据,一个从Queue里取出数据。
例:

import multiprocessing
import time
def write_queue(queue):
  # 循环写入数据
  for i in range(10):
    if queue.full():
      print("队列已满!")
      break
    # 向队列中放入消息
    queue.put(i)
    print(i)
    time.sleep(0.5)
def read_queue(queue):
  # 循环读取队列消息
  while True:
    # 队列为空,停止读取
    if queue.empty():
      print("---队列已空---")
      break
    # 读取消息并输出
    result = queue.get()
    print(result)
if __name__ == '__main__':
  # 创建消息队列
  queue = multiprocessing.Queue(3)
  # 创建子进程
  p1 = multiprocessing.Process(target=write_queue, args=(queue,))
  p1.start()
  # 等待p1写数据进程执行结束后,再往下执行
  p1.join()
  p1 = multiprocessing.Process(target=read_queue, args=(queue,))
  p1.start()

执行结果:

Pool进程池

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务。

1.创建

import multiprocessing
pool = multiprocessing.Pool(最大进程数)

2.方法

方法 描述
apply() 以同步方式添加进程
apply_async() 以异步方式添加进程
close() 关闭Pool,使其不接受新任务(还可以使用)
terminate() 不管任务是否完成,立即终止
join() 主进程阻塞,等待子进程的退出,必须在close和terminate后使用

3.进程池内通信

创建进程池内Queue消息队列通信

import multiprocessing
Queue:queue = multiprocessing.Manager().Queue()

例:

import multiprocessing
import time

写入数据的方法

def write_data(queue):
# for循环 向消息队列中写入值
for i in range(5):
# 添加消息
queue.put(i)
print(i)
time.sleep(0.2)
print("队列已满~")

创建读取数据的方法

def read_data(queue):
  # 循环读取数据
  while True:
    # 判断队列是否为空
    if queue.qsize() == 0:
      print("队列为空~")
      break
    # 从队列中读取数据
    result = queue.get()
    print(result)
if __name__ == '__main__':
  # 创建进程池
  pool = multiprocessing.Pool(2)
  # 创建进程池队列
  queue = multiprocessing.Manager().Queue()
  # 在进程池中的进程间进行通信
  # 使用线程池同步的方式,先写后读
  # pool.apply(write_data, (queue, ))
  # pool.apply(read_data, (queue, ))
  # apply_async() 返回ApplyResult 对象
  result = pool.apply_async(write_data, (queue, ))
  # ApplyResult对象的wait() 方法,表示后续进程必须等待当前进程执行完再继续
  result.wait()
  pool.apply_async(read_data, (queue, ))
  pool.close()
  # 异步后,主线程不再等待子进程执行结束,再结束
  # join() 后,表示主线程会等待子进程执行结束后,再结束
  pool.join()

运行结果:

4.案例(文件夹copy器)

代码:

# 导入模块
import os
import multiprocessing
# 拷贝文件函数
def copy_dir(file_name, source_dir, desk_dir):
  # 要拷贝的文件路径
  source_path = source_dir+'/'+file_name
  # 目标路径
  desk_path = desk_dir+'/'+file_name
  # 获取文件大小
  file_size = os.path.getsize(source_path)
  # 记录拷贝次数
  i = 0
  # 以二进制度读方式打开原文件
  with open(source_path, "rb") as source_file:
    # 以二进制写入方式创建并打开目标文件
    with open(desk_path, "wb") as desk_file:
      # 循环写入
      while True:
        # 读取1024字节
        file_data = source_file.read(1024)
        # 如果读到的不为空,则将读到的写入目标文件
        if file_data:
          desk_file.write(file_data)
          # 读取次数+1
          i += 1
          # 拷贝百分比进度等于拷贝次数*1024*100/文件大小
          n = i*102400/file_size
          if n >= 100:
            n = 100
          print(file_name, "拷贝进度%.2f%%" % n)
        else:
          print(file_name, "拷贝成功")
          break
if __name__ == '__main__':
  # 要拷贝的文件夹
  source_dir = 'test'
  # 要拷贝到的路径
  desk_dir = 'C:/Users/Administrator/Desktop/'+source_dir
  # 存在文件夹则不创建
  try:
    os.mkdir(desk_dir)
  except:
    print("目标文件夹已存在,未创建")
  # 获取文件夹内文件目录,存到列表里
  file_list = os.listdir(source_dir)
  print(file_list)
  # 创建进程池,最多同时运行3个子进程
  pool = multiprocessing.Pool(3)
  for file_name in file_list:
    # 异步方式添加到进程池内
    pool.apply_async(copy_dir, args=(file_name, source_dir, desk_dir))
  # 关闭进程池(停止添加,已添加的还可运行)
  pool.close()
  # 让主进程阻塞,等待子进程结束
  pool.join()

运行结果:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python的消息队列包SnakeMQ使用初探

    一.关于snakemq的官方介绍 SnakeMQ的GitHub项目页:https://github.com/dsiroky/snakemq 1.纯python实现,跨平台 2.自动重连接 3.可靠发送--可配置的消息方式与消息超时方式 4.持久化/临时 两种队列 5.支持异步 -- poll() 6.symmetrical -- 单个TCP连接可用于双工通讯 7.多数据库支持 -- SQLite.MongoDB-- 8.brokerless - 类似ZeroMQ的实现原理 9.扩展模块:RPC,

  • Python多进程池 multiprocessing Pool用法示例

    本文实例讲述了Python多进程池 multiprocessing Pool用法.分享给大家供大家参考,具体如下: 1. 背景 由于需要写python程序, 定时.大量发送htttp请求,并对结果进行处理. 参考其他代码有进程池,记录一下. 2. 多进程 vs 多线程 c++程序中,单个模块通常是单进程,会启动几十.上百个线程,充分发挥机器性能.(目前c++11有了std::thread编程多线程很方便,可以参考我之前的博客) shell脚本中,都是多进程后台执行.({ ...} &, 可以参考

  • Python多进程库multiprocessing中进程池Pool类的使用详解

    问题起因 最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bagging ensemble!只是我没有抽样.文本不大,大概3000行,topic个数为8,于是我写了一个串行的程序,一个topic算完之后再算另一个topic.可是我在每个topic中用了GridSearchCV来调参,又要选特征又要调整regressor的参数,导致参数组合一共有1782种.我真

  • Python操作RabbitMQ服务器实现消息队列的路由功能

    Python使用Pika库(安装:sudo pip install pika)可以操作RabbitMQ消息队列服务器(安装:sudo apt-get install rabbitmq-server),这里我们来看一下MQ相关的路由功能. 路由键的实现 比如有一个需要给所有接收端发送消息的场景,但是如果需要自由定制,有的消息发给其中一些接收端,有些消息发送给另外一些接收端,要怎么办呢?这种情况下就要用到路由键了. 路由键的工作原理:每个接收端的消息队列在绑定交换机的时候,可以设定相应的路由键.发送

  • Python RabbitMQ消息队列实现rpc

    上个项目中用到了ActiveMQ,只是简单应用,安装完成后直接是用就可以了.由于新项目中一些硬件的限制,需要把消息队列换成RabbitMQ. RabbitMQ中的几种模式和机制比ActiveMQ多多了,根据业务需要,使用RPC实现功能,其中踩过的一些坑,有必要记录一下了. 上代码,目录结构分为 c_server.c_client.c_hanlder: c_server: #!/usr/bin/env python # -*- coding:utf-8 -*- import pika import

  • 利用Python学习RabbitMQ消息队列

    RabbitMQ可以当做一个消息代理,它的核心原理非常简单:即接收和发送消息,可以把它想象成一个邮局:我们把信件放入邮箱,邮递员就会把信件投递到你的收件人处,RabbitMQ就是一个邮箱.邮局.投递员功能综合体,整个过程就是:邮箱接收信件,邮局转发信件,投递员投递信件到达收件人处. RabbitMQ和邮局的主要区别就是RabbitMQ接收.存储和发送的是二进制数据----消息. rabbitmq基本管理命令: 一步启动Erlang node和Rabbit应用:sudo rabbitmq-serv

  • python实现RabbitMQ的消息队列的示例代码

    最近在研究redis做消息队列时,顺便看了一下RabbitMQ做消息队列的实现.以下是总结的RabbitMQ中三种exchange模式的实现,分别是fanout, direct和topic. base.py: import pika # 获取认证对象,参数是用户名.密码.远程连接时需要认证 credentials = pika.PlainCredentials("admin", "admin") # BlockingConnection(): 实例化连接对象 # C

  • 利用Python操作消息队列RabbitMQ的方法教程

    前言 RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议. MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们.消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术.排队指的是应用程序通过 队列来通信.队列的使用除去了接收和发

  • Python中线程的MQ消息队列实现以及消息队列的优点解析

    "消息队列"是在消息的传输过程中保存消息的容器.消息队列管理器在将消息从它的源中继到它的目标时充当中间人.队列的主要目的是提供路由并保证消息的传递:如果发送消息时接收者不可用,消息队列会保留消息,直到可以成功地传递它.相信对任何架构或应用来说,消息队列都是一个至关重要的组件,下面是十个理由: Python的消息队列示例: 1.threading+Queue实现线程队列 #!/usr/bin/env python import Queue import threading import

  • 详解Python操作RabbitMQ服务器消息队列的远程结果返回

    先说一下笔者这里的测试环境:Ubuntu14.04 + Python 2.7.4 RabbitMQ服务器 sudo apt-get install rabbitmq-server Python使用RabbitMQ需要Pika库 sudo pip install pika 远程结果返回 消息发送端发送消息出去后没有结果返回.如果只是单纯发送消息,当然没有问题了,但是在实际中,常常会需要接收端将收到的消息进行处理之后,返回给发送端. 处理方法描述:发送端在发送信息前,产生一个接收消息的临时队列,该队

  • Python 多进程并发操作中进程池Pool的实例

    在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间.当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候就到了. Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求:但如果池中的进程数已经达到规定

  • Python进程间通信Queue消息队列用法分析

    本文实例讲述了Python进程间通信Queue消息队列用法.分享给大家供大家参考,具体如下: 进程间通信-Queue Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信. 1. Queue的使用 可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示下Queue的工作原理: 代码如下: #coding=utf-8 from multiprocessing import Queue #初始化一个

随机推荐