纯python实现机器学习之kNN算法示例

前面文章分别简单介绍了线性回归,逻辑回归,贝叶斯分类,并且用python简单实现。这篇文章介绍更简单的 knn, k-近邻算法(kNN,k-NearestNeighbor)。

k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似)。

原理

kNN算法的核心思想是用距离最近(多种衡量距离的方式)的k个样本数据来代表目标数据的分类。

具体讲,存在训练样本集, 每个样本都包含数据特征和所属分类值。

输入新的数据,将该数据和训练样本集汇中每一个样本比较,找到距离最近的k个,在k个数据中,出现次数做多的那个分类,即可作为新数据的分类。

如上图:

需要判断绿色是什么形状。当k等于3时,属于三角。当k等于5是,属于方形。

因此该方法具有一下特点:

  1. 监督学习:训练样本集中含有分类信息
  2. 算法简单, 易于理解实现
  3. 结果收到k值的影响,k一般不超过20.
  4. 计算量大,需要计算与样本集中每个样本的距离。
  5. 训练样本集不平衡导致结果不准确问题

接下来用oython 做个简单实现, 并且尝试用于约会网站配对。

python简单实现

def classify(inX, dataSet, labels, k):
  """
  定义knn算法分类器函数
  :param inX: 测试数据
  :param dataSet: 训练数据
  :param labels: 分类类别
  :param k: k值
  :return: 所属分类
  """

  dataSetSize = dataSet.shape[0] #shape(m, n)m列n个特征
  diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
  sqDiffMat = diffMat ** 2
  sqDistances = sqDiffMat.sum(axis=1)
  distances = sqDistances ** 0.5 #欧式距离
  sortedDistIndicies = distances.argsort() #排序并返回index

  classCount = {}
  for i in range(k):
    voteIlabel = labels[sortedDistIndicies[i]]
    classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 #default 0

  sortedClassCount = sorted(classCount.items(), key=lambda d:d[1], reverse=True)
  return sortedClassCount[0][0]

算法的步骤上面有详细的介绍,上面的计算是矩阵运算,下面一个函数是代数运算,做个比较理解。

def classify_two(inX, dataSet, labels, k):
  m, n = dataSet.shape  # shape(m, n)m列n个特征
  # 计算测试数据到每个点的欧式距离
  distances = []
  for i in range(m):
    sum = 0
    for j in range(n):
      sum += (inX[j] - dataSet[i][j]) ** 2
    distances.append(sum ** 0.5)

  sortDist = sorted(distances)

  # k 个最近的值所属的类别
  classCount = {}
  for i in range(k):
    voteLabel = labels[ distances.index(sortDist[i])]
    classCount[voteLabel] = classCount.get(voteLabel, 0) + 1 # 0:map default
  sortedClass = sorted(classCount.items(), key=lambda d:d[1], reverse=True)
  return sortedClass[0][0]

有了上面的分类器,下面进行最简单的实验来预测一下:

def createDataSet():
  group = np.array([[1, 1.1], [1, 1], [0, 0], [0, 0.1]])
  labels = ['A', 'A', 'B', 'B']
  return group, labels

上面是一个简单的训练样本集。

if __name__ == '__main__':
  dataSet, labels = createDataSet()
  r = classify_two([0, 0.2], dataSet, labels, 3)
  print(r)

执行上述函数:可以看到输出B, [0 ,0.2]应该归入b类。

上面就是一个最简单的kNN分类器,下面有个例子。

kNN用于判断婚恋网站中人的受欢迎程度

训练样本集中部分数据如下:

40920 8.326976 0.953952 3
14488 7.153469 1.673904 2
26052 1.441871 0.805124 1
75136 13.147394 0.428964 1
38344 1.669788 0.134296 1

第一列表示每年获得的飞行常客里程数, 第二列表示玩视频游戏所耗时间百分比, 第三类表示每周消费的冰淇淋公升数。第四列表示分类结果,1, 2, 3 分别是 不喜欢,魅力一般,极具魅力。

将数据转换成numpy。

# 文本转换成numpy
def file2matrix(filepath="datingSet.csv"):
  dataSet = np.loadtxt(filepath)
  returnMat = dataSet[:, 0:-1]
  classlabelVector = dataSet[:, -1:]
  return returnMat, classlabelVector

首先对数据有个感知,知道是哪些特征影响分类,进行可视化数据分析。

# 2, 3列数据进行分析
def show_2_3_fig():
  data, cls = file2matrix()
  fig = plt.figure()
  ax = fig.add_subplot(111)
  ax.scatter(data[:, 1], data[: ,2], c=cls)
  plt.xlabel("playing game")
  plt.ylabel("Icm Cream")
  plt.show()

如上图可以看到并无明显的分类。

可以看到不同的人根据特征有明显的区分。因此可以使用kNN算法来进行分类和预测。

由于后面要用到距离比较,因此数据之前的影响较大, 比如飞机里程和冰淇淋数目之间的差距太大。因此需要对数据进行归一化处理。

# 数据归一化
def autoNorm(dataSet):
  minVal = dataSet.min(0)
  maxVal = dataSet.max(0)
  ranges = maxVal - minVal

  normDataSet = np.zeros(dataSet.shape)
  m, n = dataSet.shape # 行, 特征
  normDataSet = dataSet - minVal
  normDataSet = normDataSet / ranges
  return normDataSet, ranges, minVal

衡量算法的准确性

knn算法可以用正确率或者错误率来衡量。错误率为0,表示分类很好。

因此可以将训练样本中的10%用于测试,90%用于训练。

# 定义测试算法的函数
def datingClassTest(h=0.1):
  hoRatio = h
  datingDataMat, datingLabels = file2matrix()
  normMat, ranges, minVals = autoNorm(datingDataMat)
  m, n = normMat.shape
  numTestVecs = int(m * hoRatio) #测试数据行数
  errorCount = 0 # 错误分类数

  # 用前10%的数据做测试
  for i in range(numTestVecs):
    classifierResult = classify(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3)
    # print('the classifier came back with: %d,the real answer is: %d' % (int(classifierResult), int(datingLabels[i])))
    if classifierResult != datingLabels[i]:
      errorCount += 1
  print("the total error rate is: %f" % (errorCount / float(numTestVecs)))

调整不同的测试比例,对比结果。

使用knn进行预测。

有了训练样本和分类器,对新数据可以进行预测。模拟数据并进行预测如下:

# 简单进行预测
def classifypersion():
  resultList = ["none", 'not at all','in small doses','in large doses']
  # 模拟数据
  ffmiles = 15360
  playing_game = 8.545204
  ice_name = 1.340429

  datingDataMat, datingLabels = file2matrix()
  normMat, ranges, minVals = autoNorm(datingDataMat)
  inArr = np.array([ffmiles, playing_game, ice_name])
  # 预测数据归一化
  inArr = (inArr - minVals) / ranges
  classifierResult = classify(inArr, normMat, datingLabels, 3)
  print(resultList[int(classifierResult)])

可以看到基本的得到所属的分类。

完成代码和数据请参考:

github:kNN

总结

  1. kNN
  2. 监督学习
  3. 数据可视化
  4. 数据归一化,不影响计算

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • python使用KNN算法手写体识别
  • Python实现KNN邻近算法
  • Python KNN分类算法学习
  • python机器学习实战之最近邻kNN分类器
  • Python代码实现KNN算法
  • 使用python实现knn算法
  • python实现kNN算法
  • Python语言描述KNN算法与Kd树
  • 以Python代码实例展示kNN算法的实际运用
  • kNN算法python实现和简单数字识别的方法
(0)

相关推荐

  • python使用KNN算法手写体识别

    本文实例为大家分享了用KNN算法手写体识别的具体代码,供大家参考,具体内容如下 #!/usr/bin/python #coding:utf-8 import numpy as np import operator import matplotlib import matplotlib.pyplot as plt import os ''''' KNN算法 1. 计算已知类别数据集中的每个点依次执行与当前点的距离. 2. 按照距离递增排序. 3. 选取与当前点距离最小的k个点 4. 确定前k个点所

  • Python实现KNN邻近算法

    简介 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表. kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. kNN方法在类别决策时,只与极少量的相邻样本有关.由于kNN

  • Python代码实现KNN算法

    kNN算法是k-近邻算法的简称,主要用来进行分类实践,主要思路如下: 1.存在一个训练数据集,每个数据都有对应的标签,也就是说,我们知道样本集中每一数据和他对应的类别. 2.当输入一个新数据进行类别或标签判定时,将新数据的每个特征值与训练数据集中的每个数据进行比较,计算其到训练数据集中每个点的距离(下列代码实现使用的是欧式距离). 3.然后提取k个与新数据最接近的训练数据点所对应的标签或类别. 4.出现次数最多的标签或类别,记为当前预测新数据的标签或类别. 欧式距离公式为: distance=

  • kNN算法python实现和简单数字识别的方法

    本文实例讲述了kNN算法python实现和简单数字识别的方法.分享给大家供大家参考.具体如下: kNN算法算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数: tile() 如tile(A,n)就是将A重复n次

  • Python KNN分类算法学习

    本文实例为大家分享了Python KNN分类算法的具体代码,供大家参考,具体内容如下 1.KNN分类算法 KNN分类算法(K-Nearest-Neighbors Classification),又叫K近邻算法,是一个概念极其简单,而分类效果又很优秀的分类算法. 他的核心思想就是,要确定测试样本属于哪一类,就寻找所有训练样本中与该测试样本"距离"最近的前K个样本,然后看这K个样本大部分属于哪一类,那么就认为这个测试样本也属于哪一类.简单的说就是让最相似的K个样本来投票决定. 这里所说的距

  • 使用python实现knn算法

    本文实例为大家分享了python实现knn算法的具体代码,供大家参考,具体内容如下 knn算法描述 对需要分类的点依次执行以下操作: 1.计算已知类别数据集中每个点与该点之间的距离 2.按照距离递增顺序排序 3.选取与该点距离最近的k个点 4.确定前k个点所在类别出现的频率 5.返回前k个点出现频率最高的类别作为该点的预测分类 knn算法实现 数据处理 #从文件中读取数据,返回的数据和分类均为二维数组 def loadDataSet(filename): dataSet = [] labels

  • python实现kNN算法

    kNN(k-nearest neighbor)是一种基本的分类与回归的算法.这里我们先只讨论分类中的kNN算法. k邻近算法的输入为实例的特征向量,对对应于特征空间中的点:输出为实例的类别,可以取多类,k近邻法是建设给定一个训练数据集,其中的实例类别已定,分类时,对于新的实例,根据其k个最邻近的训练实例的类别,通过多数表决等方式进行预测.所以可以说,k近邻法不具有显示的学习过程.k临近算法实际上是利用训练数据集对特征向量空间进行划分,并作为其分类的"模型" k值的选择,距离的度量和分类

  • Python语言描述KNN算法与Kd树

    最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可

  • 以Python代码实例展示kNN算法的实际运用

    邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表. kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. kNN方法在类别决策时,只与极少量的相邻样本有关.由于kNN方法主

  • python机器学习实战之最近邻kNN分类器

    K近邻法是有监督学习方法,原理很简单,假设我们有一堆分好类的样本数据,分好类表示每个样本都一个对应的已知类标签,当来一个测试样本要我们判断它的类别是, 就分别计算到每个样本的距离,然后选取离测试样本最近的前K个样本的标签累计投票, 得票数最多的那个标签就为测试样本的标签. 源代码详解: #-*- coding:utf-8 -*- #!/usr/bin/python # 测试代码 约会数据分类 import KNN KNN.datingClassTest1() 标签为字符串 KNN.datingC

随机推荐