matplotlib给子图添加图例的方法
代码如下:
import matplotlib.pyplot as plt x = [1,2,3,4,5,6,7,8] y = [5,2,4,2,1,4,5,2] axe1 = plt.subplot(211) s1 = axe1.scatter(x,y, color='r', s=25, marker="o") plt.legend([s1],['A']) #或者 #s1 = axe1.scatter(x,y, color='r', s=25, marker="o", label='A') #plt.legend() axe2 = plt.subplot(212) s2 = axe2.scatter(x,y, color='g', s=25, marker="o") plt.legend([s2],['B']) #或者 #s2 = axe1.scatter(x,y, color='r', s=25, marker="o", label='B') #plt.legend() plt.show()
效果图如下:
以上这篇matplotlib给子图添加图例的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
matplotlib设置legend图例代码示例
本文主要是关于matplotlib的一些基本用法. Demo import matplotlib.pyplot as plt import numpy as np # 绘制普通图像 x = np.linspace(-1, 1, 50) y1 = 2 * x + 1 y2 = x**2 plt.figure() # 在绘制时设置lable, 逗号是必须的 l1, = plt.plot(x, y1, label = 'line') l2, = plt.plot(x, y2, label = 'par
-
利用numpy+matplotlib绘图的基本操作教程
简述 Matplotlib是一个基于python的2D画图库,能够用python脚本方便的画出折线图,直方图,功率谱图,散点图等常用图表,而且语法简单.具体介绍见matplot官网. Numpy(Numeric Python)是一个模仿matlab的对python数值运算进行的扩展,提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生,而且据说自从他出现了以后,NASA就把很多原来用fortran和matlab做的工作交给了numpy来做了,可
-
Python利用matplotlib生成图片背景及图例透明的效果
前言 最近工作中遇到一个需求,在使用matplotlib生成图片,想要背景透明,而且图例部分也显示透明效果,通过查找相关资料找到了大概的设置方法,特此记录,方便自己或者有需要的朋友们参考学习. 示例代码 # coding=utf-8 # matplotlib背景透明示例图 # python 3.5 import numpy as np import matplotlib.pyplot as plt from pylab import mpl import scipy.stats as stats
-
Python matplotlib绘图可视化知识点整理(小结)
无论你工作在什么项目上,IPython都是值得推荐的.利用ipython --pylab,可以进入PyLab模式,已经导入了matplotlib库与相关软件包(例如Numpy和Scipy),额可以直接使用相关库的功能. 本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 这样IPython配置为使用你所指定的matplotlib GUI后端(TK/wxPython/PyQt/Mac OS X native/GTK).对于大部分用户而言,默认的后端就已经够用了.Pylab模式
-
python使用matplotlib绘图时图例显示问题的解决
前言 matplotlib是基于Python语言的开源项目,旨在为Python提供一个数据绘图包.在使用Python matplotlib库绘制数据图时,需要使用图例标注数据类别,但是传参时,会出现图例解释文字只显示第一个字符,需要在传参时在参数后加一个逗号(应该是python语法,加逗号,才可以把参数理解为元组类型吧),就可解决这个问题, 示例如下 import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker
-
matplotlib给子图添加图例的方法
代码如下: import matplotlib.pyplot as plt x = [1,2,3,4,5,6,7,8] y = [5,2,4,2,1,4,5,2] axe1 = plt.subplot(211) s1 = axe1.scatter(x,y, color='r', s=25, marker="o") plt.legend([s1],['A']) #或者 #s1 = axe1.scatter(x,y, color='r', s=25, marker="o"
-
matplotlib调整子图间距,调整整体空白的方法
如下所示: fig.tight_layout()#调整整体空白 plt.subplots_adjust(wspace =0, hspace =0)#调整子图间距 以上这篇matplotlib调整子图间距,调整整体空白的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
Matplotlib绘制子图的常见几种方法
前言 Matplotlib的可以把很多张图画到一个显示界面,在作对比分析的时候非常有用. 对应的有plt的subplot和figure的add_subplo的方法,参数可以是一个三位数字(例如111),也可以是一个数组(例如[1,1,1]),3个数字分别代表 子图总行数 子图总列数 子图位置 更多详情可以查看:matplotlib文档 下面贴出两种绘子图的代码 常用的三种方式 方式一:通过plt的subplot import numpy as np import pandas as pd imp
-
Matplotlib可视化之添加让统计图变得简单易懂的注释
一.前言 在系列博文的中,我们已经学习了如何自定义绘图的颜色和样式,以使得绘制更加精美.符合审美要求.可以用Matplotlib绘制出复杂而又精美的统计图,但是如果没有注释,我们很难让其他人明白图中的点.线究竟代表着什么,有什么样的含义,也就失去了统计图的意义,为了解决这一问题,Matplotlib提供了大量对图形进行注释的方法,这些注释方法对于所有的绘图函数(如plt.plot().plt.scatter().plt.histogram()等)都是通用的,利用这些注释可以使统计图变得通俗易懂.
-
Python使用matplotlib绘制正弦和余弦曲线的方法示例
本文实例讲述了Python使用matplotlib绘制正弦和余弦曲线的方法.分享给大家供大家参考,具体如下: 一 介绍 关键词:绘图库 官网:http://matplotlib.org 二 代码 import numpy as np import matplotlib.pyplot as plt #line x=np.linspace(-np.pi,np.pi,256,endpoint=True) #定义余弦函数正弦函数 c,s=np.cos(x),np.sin(x) plt.figure(1)
-
Python之Matplotlib文字与注释的使用方法
可视化对于大家来说确实是有关的,因为确实是直观的,每一组大数据如果可以用可视化进行展示的话可以让大家豁然开朗.但在另外一些场景中,辅之以少量的文字提示(textual cue)和标签是必不可少的.虽然最基本的注释(annotation)类型可能只是坐标轴标题与图标题,但注释可远远不止这些.让我们可视化一些数据,看看如何通过添加注释来更恰当地表达信息. 首先导入画图需要用到的一些函数: import matplotlib.pyplot as plt import matplotlib as mpl
-
python Matplotlib基础--如何添加文本和标注
创建一个优秀的可视化图表的关键在于引导读者,让他们能理解图表所讲述的故事.在一些情况下,这个故事可以通过纯图像的方式表达,不需要额外添加文字,但是在另外一些情况中,图表需要文字的提示和标签才能将故事讲好.也许标注最基本的类型就是图表的标签和标题,但是其中的选项参数却有很多.让我们在本节中使用一些数据来创建可视化图表并标注这些图表来表达这些有趣的信息.首先还是需要将要用到的模块和包导入Pycharm: import matplotlib.pyplot as plt import matplotli
-
Python使用matplotlib给柱状图添加数据标签bar_label()
目录 0.更新matplotlib库 1.导入库 2.数据准备 3.绘制柱状图 4.绘图结果 5.完整代码 6.bar_label()相关参数的补充说明 0.更新matplotlib库 本文后续的实验过程都是基于matplotlib版本大于等于3.4.1,如果版本较低,是无法实行后续操作的,如何在Pycharm中直接更新matplotlib库的版本,请参照方法:以tensorflow库为例用Pycharm更新第三方库 1.导入库 直接导入matplotlib.pyplot库,代码为: impor
-
AngularJS实现动态添加Option的方法
本文实例讲述了AngularJS实现动态添加Option的方法.分享给大家供大家参考,具体如下: 项目中后台管理设置,前台下拉动态添加option <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge&q
-
python编程之requests在网络请求中添加cookies参数方法详解
哎,好久没有学习爬虫了,现在想要重新拾起来.发现之前学习爬虫有些粗糙,竟然连requests中添加cookies都没有掌握,惭愧.废话不宜多,直接上内容. 我们平时使用requests获取网络内容很简单,几行代码搞定了,例如: import requests res=requests.get("https://cloud.flyme.cn/browser/index.jsp") print res.content 你没有看错,真的只有三行代码.但是简单归简单,问题还是不少的. 首先,这
随机推荐
- 修改ini文件的批处理与vbs代码
- PHP中操作ini配置文件的方法
- 如何将访问者数目周期性地保存?
- Linux编程之PING实现
- 给Flash加一个超链接(推荐使用透明层)兼容主流浏览器
- 用Python脚本生成Android SALT扰码的方法
- js取值中form.all和不加all的区别介绍
- js显示文本框提示文字的方法
- PHP获取二维数组中某一列的值集合
- PHP 5.0 Pear安装方法
- 浅析IE10兼容性问题(frameset的cols属性)
- Linux 集群技术
- 通过SQL Server的位运算功能巧妙解决多选查询方法
- jQuery学习笔记之 Ajax操作篇(一) - 数据加载
- shiro编码和加密代码详解
- JavaScript中实现键值对应的字典与哈希表结构的示例
- nodejs使用redis作为缓存介质实现的封装缓存类示例
- Taro集成Redux快速上手的方法示例
- SpringBoot基于HttpMessageConverter实现全局日期格式化
- PHP下载大文件失败并限制下载速度的实例代码