JAVA递归与非递归实现斐波那契数列

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci[1] )以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

下面我用JAVA语言递归与非递归方式不同实现:

public class Feibonacii {
  //使用递归方法实现斐波那契数列
  public static int feibonaci1(int n){
    if(n==0){return 0;}
    if(n==1){return 1;}
    return feibonaci1(n-1)+feibonaci1(n-2);
  }
  //使用非递归方法实现斐波那契数列
  public static int feibonaci2(int n){
    int arr[] = new int[n+1];
    arr[0]=0;
    arr[1]=1;
    for(int i=2;i<=n;i++){
      arr[i] = arr[i-1]+arr[i-2];
    }
    return arr[n];
  }

  public static void main(String[] args) {
    for(int i=40;i<=45;i++){
      System.out.println("feibonaci1 i="+i+",vaule="+feibonaci1(i));
    }
    for(int i=40;i<=45;i++){
      System.out.println("feibonaci2 i="+i+",vaule="+feibonaci2(i));
    }
  }
}

执行时明显发现递归方法43之后执行相对缓慢,非递归方法执行都相当快速。

分析:

(1)Java使用方法递归实现斐波那契数列,feibonaci1(45)执行一次,Java执行方法feibonaci1有2^44+2^43+……+2^1+1次,而feibonaci2(45),只执行了一次方法,但计算次数与feibonaci1一样。

结论:JAVA描述斐波那契数列,更适合使用非递归方法的形式计算。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • 三种java编程方法实现斐波那契数列
  • 递归之斐波那契数列java的3种方法
  • Java递归实现斐波那契数列
  • java编程经典案例之基于斐波那契数列解决兔子问题实例
  • java数学归纳法非递归求斐波那契数列的方法
  • java实现fibonacci数列学习示例分享(斐波那契数列)
  • java实现斐波那契数列的3种方法
(0)

相关推荐

  • java实现fibonacci数列学习示例分享(斐波那契数列)

    输出:1  1  2  3  5 复制代码 代码如下: public class FibonaciTest { public static void main(String[] args) {  Fibonaci(5); } public static void Fibonaci (int count) { int[] num = new int[count];  num[0] = num[1] = 1; for (int i = 2; i < count; i++) {   num[i] =

  • java数学归纳法非递归求斐波那契数列的方法

    本文实例讲述了java数学归纳法非递归求斐波那契数列的方法.分享给大家供大家参考.具体如下: Integer能表示的最大值为 2147483647 大概是21.4亿,这里没有考虑溢出情况(当size为983时就会溢出)! import java.util.List; import java.util.ArrayList; /** * @author jxqlovejava * 斐波那契数列 */ public class Fibonacci { public static List<Intege

  • 递归之斐波那契数列java的3种方法

    本文实例为大家分享了java递归之斐波那契数列的具体代码,供大家参考,具体内容如下 第一种.普通写法 public class Demo { public static void main(String[] args) { int num1 = 1; int num2 = 1; int num3 = 0; System.out.println(num1); System.out.println(num2); for (int i = 1; i < 10; i++) { num3 = num1 +

  • java编程经典案例之基于斐波那契数列解决兔子问题实例

    本文实例讲述了java基于斐波那契数列解决兔子问题.分享给大家供大家参考,具体如下: 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? package com.java.recursion; /** * @描述 三种方法实现斐波那契数列 * @项目名称 Java_DataStruct * @包名 com.java.recursion * @类名 Fibonacci * @author chenli

  • Java递归实现斐波那契数列

    程序调用自身的编程技巧称为递归( recursion).递归做为一种算法在程序设计语言中广泛应用. 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量.递归的能力在于用有限的语句来定义对象的无限集合.一般来说,递归需要有边界条件.递归前进段和递归返回段.当边界条件不满足时,递归前进:当边界条件满足时,递归返回.--这是百度百

  • 三种java编程方法实现斐波那契数列

    题目要求:编写程序在控制台输出斐波那契数列前20项,每输出5个数换行 //java编程:三种方法实现斐波那契数列 //其一方法: public class Demo2 { // 定义三个变量方法 public static void main(String[] args) { int a = 1, b = 1, c = 0; System.out.println("斐波那契数列前20项为:"); System.out.print(a + "\t" + b + &qu

  • java实现斐波那契数列的3种方法

    先说说为什么写这个吧,这个完全是由去阿里巴巴面试引起的一次惨目忍睹的血案.去面试的时候,由于面试前天晚上11点钟才到阿里巴巴指定面试城市,找到旅馆住下基本都1点多,加上晚上完全没有睡好,直接导致第二天面试效果很不好(对于那些正在找工作的大虾们不要向小虾一下悲剧,提前做好准备还是很重要滴),面试大概进行了一个多小时(面试结束回去的时候基本走路都快睡着了,悲催!!),面试快结束的时候面试官问的我问题就是关于费波那西数列,当时头脑完全浆糊,只知道要设置三个变量或者用List先初始化,当写到for循环的

  • 基于使用递归推算指定位数的斐波那契数列值的解决方法

    昨天面试遇到这样的一道题目:1,1,2,3,5,8,13,21...,请问第30位的值是多少? 代码实现如下: 复制代码 代码如下: //1,1,2,3,5,8,13,21.......第30个是多少?     //使用递归计算指定位数的斐波那契数列值     //Fn=F(n-1)+F(n-2)     public static int GetFibonacciNumber(int index)     {         if(index<0||index==0)throw new Exc

  • JAVA递归与非递归实现斐波那契数列

    斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci[1] )以兔子繁殖为例子而引入,故又称为"兔子数列",指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.--在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起

  • 递归形式与非递归形式的斐波那契数列的用法分析

    复制代码 代码如下: <SPAN style="FONT-SIZE: 32px">采用递归形式和非递归形式实现斐波那契数列</SPAN> 复制代码 代码如下: #include "stdafx.h"#include <iostream>using namespace std;//递归形式的斐波那契数列int fibonacciRecursion(int n){ if (n == 1 || n ==2) {  return 1; }

  • C语言实现斐波那契数列(非递归)的实例讲解

    废话不多说,直接上代码 #include <stdio.h> #include <stdlib.h> void f(int n); int main(void) { f(10); return 0; } void f(int n) { if(n==1) { printf("1\n"); return; } if(n==2) { printf("1 1\n"); return; } printf("1 1 "); int*

  • C语言数据结构递归之斐波那契数列

    C语言数据结构递归之斐波那契数列 因为自己对递归还是不太熟练,于是做POJ1753的时候就很吃力,就是翻棋子直到棋盘上所有棋子的颜色一样为止,求最少翻多少次,方法是枚举递归.然后就打算先做另一道递归的题(从数组中取出n个元素的组合),但是同样在递归的问题上不太理解.好吧,于是复习CPP,在第229页的时候,看到了斐波那契数列,回想起之前做过的一道题目,发现可以用递归的方法来做.于是决定优化一下之前的代码. 以下这段摘自<C primer plus> 斐波那契数列的定义如下:第一个和第二个数字都

  • 详解python使用递归、尾递归、循环三种方式实现斐波那契数列

    在最开始的时候所有的斐波那契代码都是使用递归的方式来写的,递归有很多的缺点,执行效率低下,浪费资源,还有可能会造成栈溢出,而递归的程序的优点也是很明显的,就是结构层次很清晰,易于理解 可以使用循环的方式来取代递归,当然也可以使用尾递归的方式来实现. 尾递归就是从最后开始计算, 每递归一次就算出相应的结果, 也就是说, 函数调用出现在调用者函数的尾部, 因为是尾部, 所以根本没有必要去保存任何局部变量. 直接让被调用的函数返回时越过调用者, 返回到调用者的调用者去.尾递归就是把当前的运算结果(或路

随机推荐