利用ctypes提高Python的执行速度

前言

ctypes是Python的外部函数库。它提供了C兼容的数据类型,并且允许调用动态链接库/共享库中的函数。它可以将这些库包装起来给Python使用。这个引入C语言的接口可以帮助我们做很多事情,比如需要调用C代码的来提高性能的一些小型问题。通过它你可以接入Windows系统上的 kernel32.dll 和 msvcrt.dll 动态链接库,以及Linux系统上的 libc.so.6 库。当然你也可以使用自己的编译好的共享库

我们先来看一个简单的例子 我们使用 Python 求 1000000 以内素数,重复这个过程10次,并计算运行时间。

import math
from timeit import timeit

def check_prime(x):
  values = xrange(2, int(math.sqrt(x)) + 1)
  for i in values:
    if x % i == 0:
      return False
  return True

def get_prime(n):
  return [x for x in xrange(2, n) if check_prime(x)]

print timeit(stmt='get_prime(1000000)', setup='from __main__ import get_prime',
       number=10)

输出

42.8259568214

下面用C语言写一个的 check_prime 函数,然后把它当作共享库(动态链接库)导入

#include <stdio.h>
#include <math.h>
int check_prime(int a)
{
  int c;
  for ( c = 2 ; c <= sqrt(a) ; c++ ) {
    if ( a%c == 0 )
      return 0;
  }
  return 1;
}

使用以下命令生成 .so (shared object)文件

gcc -shared -o prime.so -fPIC prime.c
import ctypes
import math
from timeit import timeit
check_prime_in_c = ctypes.CDLL('./prime.so').check_prime

def check_prime_in_py(x):
  values = xrange(2, int(math.sqrt(x)) + 1)
  for i in values:
    if x % i == 0:
      return False
  return True

def get_prime_in_c(n):
  return [x for x in xrange(2, n) if check_prime_in_c(x)]

def get_prime_in_py(n):
  return [x for x in xrange(2, n) if check_prime_in_py(x)]

py_time = timeit(stmt='get_prime_in_py(1000000)', setup='from __main__ import get_prime_in_py',
         number=10)
c_time = timeit(stmt='get_prime_in_c(1000000)', setup='from __main__ import get_prime_in_c',
        number=10)
print "Python version: {} seconds".format(py_time)

print "C version: {} seconds".format(c_time)

输出

Python version: 43.4539749622 seconds
C version: 8.56250786781 seconds

我们可以看到很明显的性能差距 这里有更多的方法去判断一个数是否是素数

再来看一个复杂点的例子 快速排序

mylib.c

#include <stdio.h>

typedef struct _Range {
  int start, end;
} Range;

Range new_Range(int s, int e) {
  Range r;
  r.start = s;
  r.end = e;
  return r;
}

void swap(int *x, int *y) {
  int t = *x;
  *x = *y;
  *y = t;
}

void quick_sort(int arr[], const int len) {
  if (len <= 0)
    return;
  Range r[len];
  int p = 0;
  r[p++] = new_Range(0, len - 1);
  while (p) {
    Range range = r[--p];
    if (range.start >= range.end)
      continue;
    int mid = arr[range.end];
    int left = range.start, right = range.end - 1;
    while (left < right) {
      while (arr[left] < mid && left < right)
        left++;
      while (arr[right] >= mid && left < right)
        right--;
      swap(&arr[left], &arr[right]);
    }
    if (arr[left] >= arr[range.end])
      swap(&arr[left], &arr[range.end]);
    else
      left++;
    r[p++] = new_Range(range.start, left - 1);
    r[p++] = new_Range(left + 1, range.end);
  }
}
gcc -shared -o mylib.so -fPIC mylib.c

使用ctypes有一个麻烦点的地方是原生的C代码使用的类型可能跟Python不能明确的对应上来。比如这里什么是Python中的数组?列表?还是 array 模块中的一个数组。所以我们需要进行转换

test.py

import ctypes
import time
import random

quick_sort = ctypes.CDLL('./mylib.so').quick_sort
nums = []
for _ in range(100):
  r = [random.randrange(1, 100000000) for x in xrange(100000)]
  arr = (ctypes.c_int * len(r))(*r)
  nums.append((arr, len(r)))

init = time.clock()
for i in range(100):
  quick_sort(nums[i][0], nums[i][1])
print "%s" % (time.clock() - init)

输出

1.874907

与Python list 的 sort 方法进行对比

import ctypes
import time
import random

quick_sort = ctypes.CDLL('./mylib.so').quick_sort
nums = []
for _ in range(100):
  nums.append([random.randrange(1, 100000000) for x in xrange(100000)])

init = time.clock()
for i in range(100):
  nums[i].sort()
print "%s" % (time.clock() - init)

输出

2.501257

至于结构体,需要定义一个类,包含相应的字段和类型

class Point(ctypes.Structure):
  _fields_ = [('x', ctypes.c_double),
        ('y', ctypes.c_double)]

除了导入我们自己写的C语言扩展文件,我们还可以直接导入系统提供的库文件,比如linux下c标准库的实现 glibc

import time
import random
from ctypes import cdll
libc = cdll.LoadLibrary('libc.so.6') # Linux系统
# libc = cdll.msvcrt # Windows系统
init = time.clock()
randoms = [random.randrange(1, 100) for x in xrange(1000000)]
print "Python version: %s seconds" % (time.clock() - init)
init = time.clock()
randoms = [(libc.rand() % 100) for x in xrange(1000000)]
print "C version : %s seconds" % (time.clock() - init)

输出

Python version: 0.850172 seconds
C version : 0.27645 seconds

总结

以上就是这篇文章的全部内容,希望对大家学习或使用Python能有一定的帮助,如果有疑问大家可以留言交流。

(0)

相关推荐

  • Python入门教程 超详细1小时学会Python

    为什么使用Python    假设我们有这么一项任务:简单测试局域网中的电脑是否连通.这些电脑的ip范围从192.168.0.101到192.168.0.200. 思路:用shell编程.(Linux通常是bash而Windows是批处理脚本).例如,在Windows上用ping ip 的命令依次测试各个机器并得到控制台输出.由于ping通的时候控制台文本通常是"Reply from ... " 而不通的时候文本是"time out ... " ,所以,在结果中进行

  • Python 元组(Tuple)操作详解

    一.创建元组 复制代码 代码如下: tup1 = ('physics', 'chemistry', 1997, 2000);tup2 = (1, 2, 3, 4, 5 );tup3 = "a", "b", "c", "d"; 创建空元组 复制代码 代码如下: tup1 = (); 元组中只包含一个元素时,需要在元素后面添加逗号来消除歧义 复制代码 代码如下: tup1 = (50,); 元组与字符串类似,下标索引从0开始,可以

  • Python 字符串操作方法大全

    1.去空格及特殊符号 复制代码 代码如下: s.strip().lstrip().rstrip(',') 2.复制字符串 复制代码 代码如下: #strcpy(sStr1,sStr2)sStr1 = 'strcpy'sStr2 = sStr1sStr1 = 'strcpy2'print sStr2 3.连接字符串 复制代码 代码如下: #strcat(sStr1,sStr2)sStr1 = 'strcat'sStr2 = 'append'sStr1 += sStr2print sStr1 4.查

  • python 字符串split的用法分享

    比如我们的存储的格式的: 格式的: 姓名,年龄|另外一个用户姓名,年龄 name:haha,age:20|name:python,age:30|name:fef,age:55 那我们可以通过字符串对象的split方法切割字符串对象为列表. a = 'name:haha,age:20|name:python,age:30|name:fef,age:55' print a.split('|') 返回结果:['name:haha,age:20', 'name:python,age:30', 'name

  • Python 列表(List)操作方法详解

    列表是Python中最基本的数据结构,列表是最常用的Python数据类型,列表的数据项不需要具有相同的类型.列表中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推.Python有6个序列的内置类型,但最常见的是列表和元组.序列都可以进行的操作包括索引,切片,加,乘,检查成员.此外,Python已经内置确定序列的长度以及确定最大和最小的元素的方法. 一.创建一个列表只要把逗号分隔的不同的数据项使用方括号括起来即可.如下所示: 复制代码 代码如下: list1

  • Python 字典(Dictionary)操作详解

    Python字典是另一种可变容器模型,且可存储任意类型对象,如字符串.数字.元组等其他容器模型.一.创建字典字典由键和对应值成对组成.字典也被称作关联数组或哈希表.基本语法如下: 复制代码 代码如下: dict = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'} 也可如此创建字典: 复制代码 代码如下: dict1 = { 'abc': 456 };dict2 = { 'abc': 123, 98.6: 37 }; 注意:每个键与值用冒号隔开

  • 比较详细Python正则表达式操作指南(re使用)

    就其本质而言,正则表达式(或 RE)是一种小型的.高度专业化的编程语言,(在Python中)它内嵌在Python中,并通过 re 模块实现.使用这个小型语言,你可以为想要匹配的相应字符串集指定规则:该字符串集可能包含英文语句.e-mail地址.TeX命令或任何你想搞定的东西.然後你可以问诸如"这个字符串匹配该模式吗?"或"在这个字符串中是否有部分匹配该模式呢?".你也可以使用 RE 以各种方式来修改或分割字符串. 正则表达式模式被编译成一系列的字节码,然後由用 C

  • python使用ctypes模块调用windowsapi获取系统版本示例

    python使用ctypes模块调用windows api GetVersionEx获取当前系统版本,没有使用python32 复制代码 代码如下: #!c:/python27/python.exe#-*- coding:utf-8 -*- "通过调用Window API判断当前系统版本"# 演示通过ctypes调用windows api函数.# 作者已经知道python32能够实现相同功能# 语句末尾加分号,纯属个人习惯# 仅作部分版本判断,更详细的版本判断推荐系统OSVERSION

  • python 中文乱码问题深入分析

    在本文中,以'哈'来解释作示例解释所有的问题,"哈"的各种编码如下: 1. UNICODE (UTF8-16),C854: 2. UTF-8,E59388: 3. GBK,B9FE. 一.python中的str和unicode 一直以来,python中的中文编码就是一个极为头大的问题,经常抛出编码转换的异常,python中的str和unicode到底是一个什么东西呢? 在python中提到unicode,一般指的是unicode对象,例如'哈哈'的unicode对象为 u'\u54c8

  • 利用ctypes提高Python的执行速度

    前言 ctypes是Python的外部函数库.它提供了C兼容的数据类型,并且允许调用动态链接库/共享库中的函数.它可以将这些库包装起来给Python使用.这个引入C语言的接口可以帮助我们做很多事情,比如需要调用C代码的来提高性能的一些小型问题.通过它你可以接入Windows系统上的 kernel32.dll 和 msvcrt.dll 动态链接库,以及Linux系统上的 libc.so.6 库.当然你也可以使用自己的编译好的共享库 我们先来看一个简单的例子 我们使用 Python 求 100000

  • Python优化技巧之利用ctypes提高执行速度

    首先给大家分享一个个人在使用python的ctypes调用c库的时候遇到的一个小坑 这次出问题的地方是一个C函数,返回值是malloc生成的字符串地址.平常使用也没问题,也用了有段时间, 没发现什么异常. 这次在测试中,发现使用这个过程会出现"段错误",造成程序退出了. 经过排查, 确定问题原因是C函数的返回值问题,ctypes默认的函数返回类型是int类型. 需要在使用中设置返回类型,例如: func.restype = c_char_p 下面我们就来详细探讨下ctypes的使用小技

  • 采用Psyco实现python执行速度提高到与编译语言一样的水平

    本文实例讲述了采用Psyco实现python执行速度提高到与编译语言一样的水平的方法,分享给大家供大家参考.具体实现方法如下: 一.安装Psyco很简单,它有两种安装方式,一种是源码方式,一种是二进制码方式: 如果用源码方式安装,你需在源码的目录中调用python setup.py install命令编译生成psyco子目录,再把该子目录整个拷贝到python的site-packages目录下. 如果用二进制码方式安装,按这个网址列表中的python与psyco版本对应表下载合适的二进制文件,解

  • Python利用IPython提高开发效率

    一.IPython 简介 IPython 是一个交互式的 Python 解释器,而且它更加高效. 它和大多传统工作模式(编辑 -> 编译 -> 运行)不同的是, 它采用的工作模式是:执行 -> 探索 ,而大部分和数据分析相关的代 码都含有探索式操作(比如试误法和迭代法),所以 IPython 能大大提高编码效率. IPython 发展到现在,它不仅仅只是一个加强版的 Python shell 了, 它集成了 GUI 控制台,这可以让你直接进行绘图操作:它还有一个基于 Web 的交互式笔记

  • 利用numba让python速度提升百倍

    目录 一.什么是numba? 二.numba适合科学计算 三.学习使用numba 四.numba让python飞起来 前言; python由于它动态解释性语言的特性,跑起代码来相比java.c++要慢很多,尤其在做科学计算的时候,十亿百亿级别的运算,让python的这种劣势更加凸显. 办法永远比困难多,numba就是解决python慢的一大利器,可以让python的运行速度提升上百倍! 一.什么是numba? numba是一款可以将python函数编译为机器代码的JIT编译器,经过numba编译

  • python利用paramiko连接远程服务器执行命令的方法

    python中的paramiko模块是用来实现ssh连接到远程服务器上的库,在进行连接的时候,可以用来执行命令,也可以用来上传文件. 1.得到一个连接的对象 在进行连接的时候,可以使用如下的代码: def connect(host): 'this is use the paramiko connect the host,return conn' ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddP

  • 使用Python paramiko模块利用多线程实现ssh并发执行操作

    1.paramiko概述 ssh是一个协议,OpenSSH是其中一个开源实现,paramiko是Python的一个库,实现了SSHv2协议(底层使用cryptography). 有了Paramiko以后,我们就可以在Python代码中直接使用SSH协议对远程服务器执行操作,而不是通过ssh命令对远程服务器进行操作. 由于paramiko属于第三方库,所以需要使用如下命令先行安装 2.安装paramiko pip install paramiko 3.常用方法 connect():实现远程服务器的

  • 提高python代码运行效率的一些建议

    1. 优化代码和算法 一定要先好好看看你的代码和算法.许多速度问题可以通过实现更好的算法或添加缓存来解决.本文所述都是关于这一主题的,但要遵循的一些一般指导方针是: 测量,不要猜测. 测量代码中哪些部分运行时间最长,先把重点放在那些部分上. 实现缓存. 如果你从磁盘.网络和数据库执行多次重复的查找,这可能是一个很大的优化之处. 重用对象,而不是在每次迭代中创建一个新对象.Python 必须清理你创建的每个对象才能释放内存,这就是所谓的"垃圾回收".许多未使用对象的垃圾回收会大大降低软件

  • 六个窍门助你提高Python运行效率

    不喜欢Python的人经常会吐嘈Python运行太慢.但是,事实并非如此.尝试以下六个窍门,来为你的Python应用提速. 窍门一:关键代码使用外部功能包 Python简化了许多编程任务,但是对于一些时间敏感的任务,它的表现经常不尽人意.使用C/C++或机器语言的外部功能包处理时间敏感任务,可以有效提高应用的运行效率.这些功能包往往依附于特定的平台,因此你要根据自己所用的平台选择合适的功能包.简而言之,这个窍门要你牺牲应用的可移植性以换取只有通过对底层主机的直接编程才能获得的运行效率.以下是一些

  • 利用4行Python代码监测每一行程序的运行时间和空间消耗

    Python是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言,其具有高可扩展性和高可移植性,具有广泛的标准库,受到开发者的追捧,广泛应用于开发运维(DevOps).数据科学.网站开发和安全.然而,它没有因速度和空间而赢得任何称赞,主要原因是Python是一门动态类型语言,每一个简单的操作都需要大量的指令才能完成. 所以这更加需要开发者在使用Python语言开发项目时协调好程序运行的时间和空间. 1.分析时间耗时 分析项目消耗的时间消耗,依托于line_profiler模块,其可以计

随机推荐