Pytorch Mac GPU 训练与测评实例

目录
  • 正文
    • 加速原理
    • 环境配置
    • 跑一个MNIST
    • 跑一下VAE模型
    • 一个愿景

正文

Pytorch的官方博客发了Apple M1 芯片 GPU加速的文章,这是我期待了很久的功能,因此很兴奋,立马进行测试,结论是在MNIST上,速度与P100差不多,相比CPU提速1.7倍。当然这只是一个最简单的例子,不能反映大部分情况。这里详细记录操作的一步步流程,如果你也感兴趣,不妨自己上手一试。

加速原理

苹果有自己的一套GPU实现API Metal,而Pytorch此次的加速就是基于Metal,具体来说,使用苹果的Metal Performance Shaders(MPS)作为PyTorch的后端,可以实现加速GPU训练。MPS后端扩展了PyTorch框架,提供了在Mac上设置和运行操作的脚本和功能。MPS通过针对每个Metal GPU系列的独特特性进行微调的内核来优化计算性能。新设备在MPS图形框架和MPS提供的调整内核上映射机器学习计算图形和基元。

因此此次新增的的device名字是mps, 使用方式与cuda 类似,例如:

import torch
foo = torch.rand(1, 3, 224, 224).to('mps')
device = torch.device('mps')
foo = foo.to(device)

是不是熟悉的配方,熟悉的味道?可以说是无门槛即可上手。

此外发现,Pytorch已经支持下面这些device了,确实出乎意料:

cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, ideep, hip, ve, ort, mps, xla, lazy, vulkan, meta, hpu

环境配置

为了使用这个实验特性,你需要满足下面三个条件:

  • 有一台配有Apple Silicon 系列芯片(M1, M1 Pro, M1 Pro Max, M1 Ultra)的Mac笔记本
  • 安装了arm64位的Python
  • 安装了最新的nightly 版本的Pytorch

第一个条件需要你自己来设法满足,这篇文章对它的达到没有什么帮助。

假设机器已经准备好。我们可以从这里下载arm64版本的miniconda(文件名是Miniconda3 macOS Apple M1 64-bit bash,基于它安装的Python环境就是arm64位的。下载和安装Minicoda的命令如下:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh
chmod +x Miniconda3-latest-MacOSX-arm64.sh
./Miniconda3-latest-MacOSX-arm64.sh

按照说明来操作即可,安装完成后,创建一个虚拟环境,通过检查platform.uname()[4] 是不是为arm64 来检查Python的架构:

conda config --env --set always_yes true
conda create -n try-mps python=3.8
conda activate try-mps
python -c "import platform; print(platform.uname()[4])"

如果最后一句命令的输出为arm64 ,说明Python版本OK,可以继续往下走了。

第三步,安装nightly版本的Pytorch,在开启的虚拟环境中进行下面的操作:

python -m pip  install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

执行完成后通过下面的命令检查MPS后端是否可用:

python -c "import torch;print(torch.backends.mps.is_built())"

如果输出为True ,说明MPS后端可用,可以继续往下走了。

跑一个MNIST

基于Pytorch官方的example中的MNIST例子,修改了来测试cpu和mps模式,代码如下:

from __future__ import print_function
import argparse
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout(0.25)
        self.dropout2 = nn.Dropout(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)
    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output
def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
            if args.dry_run:
                break
def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=4, metavar='N',
                        help='number of epochs to train (default: 14)')
    parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
                        help='learning rate (default: 1.0)')
    parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
                        help='Learning rate step gamma (default: 0.7)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--use_gpu', action='store_true', default=False,
                        help='enable MPS')
    parser.add_argument('--dry-run', action='store_true', default=False,
                        help='quickly check a single pass')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_gpu = args.use_gpu
    torch.manual_seed(args.seed)
    device = torch.device("mps" if args.use_gpu else "cpu")
    train_kwargs = {'batch_size': args.batch_size}
    test_kwargs = {'batch_size': args.test_batch_size}
    if use_gpu:
        cuda_kwargs = {'num_workers': 1,
                       'pin_memory': True,
                       'shuffle': True}
        train_kwargs.update(cuda_kwargs)
        test_kwargs.update(cuda_kwargs)
    transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
        ])
    dataset1 = datasets.MNIST('../data', train=True, download=True,
                       transform=transform)
    dataset2 = datasets.MNIST('../data', train=False,
                       transform=transform)
    train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
    test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
    model = Net().to(device)
    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(model, device, test_loader)
        scheduler.step()
if __name__ == '__main__':
    t0 = time.time()
    main()
    t1 = time.time()
    print('time_cost:', t1 - t0)

测试CPU:

python main.py

测试MPS:

python main --use_gpu

在M1机器上测试发现,训一个Epoch的MNIST,CPU耗时33.4s,而使用MPS的话耗时19.6s,加速1.7倍,好想没官方博客中说的那么多,估计是跟模型太小有关。

我又在Nvidia P100 GPU服务器上进行了测试,CPU耗时34.2s,使用CUDA 耗时20.4s,加速比1.67倍,跟M1差不多,整体速度略低于M1。 下面是一个总结表格:

机器 内存 CPU耗时 GPU耗时 加速比
M1 16G 33.4s 19.6s 1.70
P100 256G 34.2s 20.4s 1.67

跑一下VAE模型

类似地,跑一下这个仓库里面地VAE模型,发现CPU模式正常,换成MPS后loss不断增大,最后到nan,看来还是有bug的 (毕竟是实验特性),可以在Pytorch GitHub 仓库里面提issue,期待更好的Pytorch。

[W ParallelNative.cpp:229] Warning: Cannot set number of intraop threads after parallel work has started or after set_num_threads call when using native parallel backend (function set_num_threads)
Train Epoch: 1 [0/60000 (0%)]   Loss: 550.842529
Train Epoch: 1 [1280/60000 (2%)]        Loss: 330.613251
Train Epoch: 1 [2560/60000 (4%)]        Loss: 4705.016602
Train Epoch: 1 [3840/60000 (6%)]        Loss: 183532752.000000
...
Train Epoch: 6 [40960/60000 (68%)]      Loss: nan
Train Epoch: 6 [42240/60000 (70%)]      Loss: nan

一个愿景

开头提到,关注这个特性挺久了,其实我最初的想法,是希望一台普通计算设备(不带GPU的笔记本,智能手机)都能训非常快的模型。因为GPU卡很昂贵,只有科研机构和大公司才有,普通人购买成本比较高,而云服务商提供的GPU按时收费,价格不菲。另一方面,所有普通笔记本和智能手机都有不错的CPU,算力不错,如果能将这部分性能合理地利用起来,就像深度学习前的时代一样,有一台笔记本就能用MatLab快速地进行科学实验,这样才能将AI推广到更多人,将AI平民化,也避免了大公司在硬件资源上的垄断和显卡巨大的能耗。

今天的Mac GPU训练至少是在降低深度学习能耗和深度学习模型训练的"轻量化"上面有了一个大的进步,你可以抱着笔记本在床上训练改变AI模型了 。但以Mac笔记的价格,很难说在平民化方向上有任何的进展。

以上就是Pytorch Mac GPU 训练与测评实例的详细内容,更多关于Pytorch Mac GPU训练测评的资料请关注我们其它相关文章!

(0)

相关推荐

  • pytorch模型的保存加载与续训练详解

    目录 前面 模型保存与加载 方式1 方式2 方式3 总结 前面 最近,看到不少小伙伴问pytorch如何保存和加载模型,其实这部分pytorch官网介绍的也是很清楚的,感兴趣的点击了解详情

  • M1 mac安装PyTorch的实现步骤

    目录 第一步 -安装和配置Miniforge 第二步-创建虚拟环境 第三步 -安装PyTorch 第四步 -测试 最后总结 M1 macbook已经不是什么新产品了.TensorFlow官方已经给出了安装指南和效率评测. 本文将介绍如何在M1机器上本地安装和运行PyTorch.你使用的M1机型(Air.Pro.Mini或iMac)没有区别. 第一步 -安装和配置Miniforge 我花了很多时间为数据科学需求配置我的M1 Mac.但是都不能完美的解决我的问题.直到我找到了这个.根据网速的不同,完

  • Pytorch 使用Google Colab训练神经网络深度学习

    目录 学习前言 什么是Google Colab 相关链接 利用Colab进行训练 一.数据集与预训练权重的上传 1.数据集的上传 2.预训练权重的上传 二.打开Colab并配置环境 1.笔记本的创建 2.环境的简单配置 3.深度学习库的下载 4.数据集的复制与解压 5.保存路径设置 三.开始训练 1.标注文件的处理 2.训练文件的处理 3.开始训练 断线怎么办? 1.防掉线措施 2.完了还是掉线呀? 总结 学习前言 Colab是谷歌提供的一个云学习平台,Very Nice,最近卡不够用了决定去白

  • mac安装pytorch及系统的numpy更新方法

    安装Pytorch 在pytorch官网上选择相应选项,我的是OS X, pip, python2.7, none CUDA. (之所以用python2.7只是觉得现在还有好多代码用2.7写的,用3+版本经常会由于语法更新而报错.而且用3+的话sublime还要配下python3 的building system......) 打开terminal,输入: sudo pip install http://download.pytorch.org/whl/torch-0.3.0.post4-cp2

  • PyTorch使用GPU训练的两种方法实例

    目录 Pytorch 使用GPU训练 方法一 .cuda() 方法二 .to(device) 附:一些和GPU有关的基本操作汇总 总结 Pytorch 使用GPU训练 使用 GPU 训练只需要在原来的代码中修改几处就可以了. 我们有两种方式实现代码在 GPU 上进行训练 方法一 .cuda() 我们可以通过对网络模型,数据,损失函数这三种变量调用 .cuda() 来在GPU上进行训练 # 将网络模型在gpu上训练 model = Model() model = model.cuda() # 损失

  • Pytorch深度学习经典卷积神经网络resnet模块训练

    目录 前言 一.resnet 二.resnet网络结构 三.resnet18 1.导包 2.残差模块 2.通道数翻倍残差模块 3.rensnet18模块 4.数据测试 5.损失函数,优化器 6.加载数据集,数据增强 7.训练数据 8.保存模型 9.加载测试集数据,进行模型测试 四.resnet深层对比 前言 随着深度学习的不断发展,从开山之作Alexnet到VGG,网络结构不断优化,但是在VGG网络研究过程中,人们发现随着网络深度的不断提高,准确率却没有得到提高,如图所示: 人们觉得深度学习到此

  • Pytorch Mac GPU 训练与测评实例

    目录 正文 加速原理 环境配置 跑一个MNIST 跑一下VAE模型 一个愿景 正文 Pytorch的官方博客发了Apple M1 芯片 GPU加速的文章,这是我期待了很久的功能,因此很兴奋,立马进行测试,结论是在MNIST上,速度与P100差不多,相比CPU提速1.7倍.当然这只是一个最简单的例子,不能反映大部分情况.这里详细记录操作的一步步流程,如果你也感兴趣,不妨自己上手一试. 加速原理 苹果有自己的一套GPU实现API Metal,而Pytorch此次的加速就是基于Metal,具体来说,使

  • 关于pytorch多GPU训练实例与性能对比分析

    以下实验是我在百度公司实习的时候做的,记录下来留个小经验. 多GPU训练 cifar10_97.23 使用 run.sh 文件开始训练 cifar10_97.50 使用 run.4GPU.sh 开始训练 在集群中改变GPU调用个数修改 run.sh 文件 nohup srun --job-name=cf23 $pt --gres=gpu:2 -n1 bash cluster_run.sh $cmd 2>&1 1>>log.cf50_2GPU & 修改 –gres=gpu:

  • pytorch 指定gpu训练与多gpu并行训练示例

    一. 指定一个gpu训练的两种方法: 1.代码中指定 import torch torch.cuda.set_device(id) 2.终端中指定 CUDA_VISIBLE_DEVICES=1 python 你的程序 其中id就是你的gpu编号 二. 多gpu并行训练: torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0) 该函数实现了在module级别上的数据并行使用,注意batch size要大于G

  • 解决pytorch多GPU训练保存的模型,在单GPU环境下加载出错问题

    背景 在公司用多卡训练模型,得到权值文件后保存,然后回到实验室,没有多卡的环境,用单卡训练,加载模型时出错,因为单卡机器上,没有使用DataParallel来加载模型,所以会出现加载错误. 原因 DataParallel包装的模型在保存时,权值参数前面会带有module字符,然而自己在单卡环境下,没有用DataParallel包装的模型权值参数不带module.本质上保存的权值文件是一个有序字典. 解决方法 1.在单卡环境下,用DataParallel包装模型. 2.自己重写Load函数,灵活.

  • pytorch使用指定GPU训练的实例

    本文适合多GPU的机器,并且每个用户需要单独使用GPU训练. 虽然pytorch提供了指定gpu的几种方式,但是使用不当的话会遇到out of memory的问题,主要是因为pytorch会在第0块gpu上初始化,并且会占用一定空间的显存.这种情况下,经常会出现指定的gpu明明是空闲的,但是因为第0块gpu被占满而无法运行,一直报out of memory错误. 解决方案如下: 指定环境变量,屏蔽第0块gpu CUDA_VISIBLE_DEVICES = 1 main.py 这句话表示只有第1块

  • pytorch 修改预训练model实例

    我就废话不多说了,直接上代码吧! class Net(nn.Module): def __init__(self , model): super(Net, self).__init__() #取掉model的后两层 self.resnet_layer = nn.Sequential(*list(model.children())[:-2]) self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3)

  • pytorch使用horovod多gpu训练的实现

    pytorch在Horovod上训练步骤分为以下几步: import torch import horovod.torch as hvd # Initialize Horovod 初始化horovod hvd.init() # Pin GPU to be used to process local rank (one GPU per process) 分配到每个gpu上 torch.cuda.set_device(hvd.local_rank()) # Define dataset... 定义d

  • 详解pytorch的多GPU训练的两种方式

    目录 方法一:torch.nn.DataParallel 1. 原理 2. 常用的配套代码如下 3. 优缺点 方法二:torch.distributed 1. 代码说明 方法一:torch.nn.DataParallel 1. 原理 如下图所示:小朋友一个人做4份作业,假设1份需要60min,共需要240min. 这里的作业就是pytorch中要处理的data. 与此同时,他也可以先花3min把作业分配给3个同伙,大家一起60min做完.最后他再花3min把作业收起来,一共需要66min. 这个

  • 在Pytorch中使用Mask R-CNN进行实例分割操作

    在这篇文章中,我们将讨论mask R-CNN背后的一些理论,以及如何在PyTorch中使用预训练的mask R-CNN模型. 1.语义分割.目标检测和实例分割 之前已经介绍过: 1.语义分割:在语义分割中,我们分配一个类标签(例如.狗.猫.人.背景等)对图像中的每个像素. 2.目标检测:在目标检测中,我们将类标签分配给包含对象的包围框. 一个非常自然的想法是把两者结合起来.我们只想在一个对象周围识别一个包围框,并且找到包围框中的哪些像素属于对象. 换句话说,我们想要一个掩码,它指示(使用颜色或灰

随机推荐