Python使用OpenCV实现虚拟缩放效果

目录
  • 介绍
  • 要求
  • 目标
  • 构建
  • 结论

介绍

OpenCV 彻底改变了整个图像处理领域。从图像分类到对象检测,我们不仅可以使用 OpenCV 库做一些很酷的事情,而且还可以构建一流的应用程序。

今天我们要实现一个有趣的东西,它是手机或电脑中的一种功能,即图像缩放。但在这里,它将是实时对帧上所需的图像进行虚拟缩放。

要求

对于这个项目,我们将使用 OpenCV 库和另一个名为 Cvzone 的库来使用虚拟缩放。

CVZone

它是一个建立在 OpenCV 和 MediaPipe 之上的库。它使事情变得容易得多。

CVZone 具有一些非常有用的内置功能,例如手部跟踪、面部标志检测、姿势估计等等。这些都可以通过几行代码来完成。

让我们编写一段代码来看看使用 CVZone 的手部检测器的演示。首先,安装 requirements 。你可以使用以下命令安装它,也可以逐个安装。

– pip install -r requirements.txt

– pip install opencv-python==3.4.11.43

– pip install cvzone==1.5.3

现在让我们检测手。

import cv2
from cvzone.HandTrackingModule import HandDetector
# Input from webcam
frame = cv2.VideoCapture(0)
frame.set(3, 1280)
frame.set(4, 720)

# initialize hand detector module with some confidence
handDetector = HandDetector(detectionCon=0.8)

# loop
while True:
# Read the frames from webcam
res, img = frame.read()

# detect the hands, by default it will detect two hands
hands = handDetector.findHands(img)

# show the output
cv2.imshow(“Sample CVZone output”, img)
cv2.waitKey(1)

首先,让我们导入所需的模块,cv2,以及从 cvzone.HandTrackingModule 导入HandDetector*。*

然后我们将使用 OpenCV 的 Videocapture 功能从网络摄像头获取输入。设置窗口的高度和宽度,并以一定的检测置信度初始化手部检测器模块。

然后在循环内部从网络摄像头读取输入帧并将其传递给手部检测器模块内部的方法,即 findHands。显示图像。

与此类似,我们可以使用 CVZone 实现面部地标检测、姿势估计等。

目标

我们的目标是构建一个屏幕上有图像的项目,使用 OpenCV 进行虚拟缩放,并使用我们的手势,即如果双手的食指和拇指向上并且两根手指彼此远离,就放大,如果双手的食指和拇指向上并且两根手指彼此靠近,则缩小该图像或对象。牢记这一点,我们将制定一些步骤。

步骤

初始化来自网络摄像头的输入。

设置输出窗口的高度和宽度。

初始化手部检测器模块。

分别声明计算距离、缩放范围、中心X和中心Y的4个变量。

读取输入帧。

检测双手。

读取用于缩放操作的图像。

检查是否检测到两只手。

检查食指和拇指是否向上。

计算两只手之间的距离,并将图像调整到两只手的中心。

计算新的高度和宽度,然后调整图像大小。

显示输出。

构建

如上一节所述安装所需的库。现在让我们开始吧。

首先,导入所需的模块。这里我们只需要 cv2 和 cvzone 的手部检测器模块。

导入库后,使用 cv2.VideoCapture(0) 从网络摄像头获取输入,其中 0 是网络摄像头 ID。

然后设置输出窗口的宽度和高度。这里是 1280 x 720。

import cv2
from cvzone.HandTrackingModule import HandDetector
# Input from webcam
frame = cv2.VideoCapture(0)
frame.set(3, 1280)
frame.set(4, 720)

现在,我们将初始化手检测模块(handDetector),检测置信度为 0.8,并将在 while 循环中用于检测手。

声明 4 个变量,一个是初始存储距离,它是None,一个是缩放范围,初始是0,另外 2 个用于捕捉缩放对象的中心 X 和中心 Y,并设置一些随机值。

这里代码中的变量分别是 distStart、zoom_range、cx、cy。

# initialize hand detector module
handDetector = HandDetector(detectionCon=0.8)
distStart = None
zoom_range = 0
cx, cy = 500, 500

开始一个while循环,从现在开始,一切操作都应该在这个循环中。

从网络摄像头读取输入,并使用上面初始化的手部检测器模块,我们可以调用方法 findHands 将帧作为输入传递。此方法会在框架中找到手,默认它可以检测框架中的两只手并返回手的列表。

我们可以从中访问每只检测到的手(这里:一只手为hands[0],另一只手为hands[1]),并且它还返回图像。然后我们将使用 OpenCV 的 imread() 函数读取屏幕上要缩放的图像。最好图像大小应低于 (250, 250),否则你可以使用 cv2.resize(img, (250,250)) 调整其大小。这里图像大小为 (225, 225)。

while True:
    # Read the input frame
    res, img = frame.read()
    # Detect the hands
    hands, img = handDetector.findHands(img)
    # Image to be zoomed
    new_img = cv2.imread('resized_test.jpg')

现在,我们需要检查框架中是否有两只手,然后我们将检查食指和拇指是否向上,这可以使用手检测模块中的 FingerUp() 方法轻松完成。

在下面的第一个 if 语句之后的代码中,我们将使用两个打印语句 print(handDetector.fingersUp(hands[0])) ,如果食指和拇指向上,则这将打印一个包含 5 个元素的列表,结果列表显示一只手将是 [1, 1, 0, 0, 0],另一只手类似地执行 print(handDetector.fingersUp(hands[1]))。

请参考下图。

# if two hands are detected
if len(hands) == 2:
    print("Start Zoom...")
    print(handDetector.fingersUp(hands[0]))
    print(handDetector.fingersUp(hands[1]))

然后是重要的部分,现在我们需要检查双手的食指和拇指是否向上。我们将再次使用 if 语句(在第一个 if 语句中:if handDetector.fingersUp(hands[0]) == [1, 1, 0, 0, 0] 和 handDetector.fingersUp(hands[1]) == [ 1, 1, 0, 0, 0]:) 然后求两只手之间的距离,具体来说就是食指两点之间的距离。

在下面的代码中,findDistance() 方法将找到距离,这里我们将两只手的中心作为参数与框架一起传递。findDistance() 方法将返回三个项目距离,一个包含位置 4 和 5 的中心 X 和中心 Y 的元组以及图像。

如果仅当 distStart 为 None 时才执行条件,则将获得的距离分配给我们之前声明的第三个变量 distStart。然后,计算新距离并从旧距离 distStart 中减去它,并执行除以 2 (向下取整)以获得缩放范围。然后将中心坐标分配给变量cx,cy。然后,如果框架中没有两只手,则将 distStart 变量重置为 None。

if handDetector.fingersUp(hands[0]) == [1, 1, 0, 0, 0] and handDetector.fingersUp(hands[1]) == [1, 1, 0, 0, 0]:
        # print("Start Zoom...")
        lmList1 = hands[0]['lmList']
        lmList2 = hands[1]['lmList']
        # point 8 is tip of the index finger
        if distStart is None:
            # length, info, img = handDetector.findDistance(lmList1[8], lmList2[8], img)
            # draw the connection points between right hand index and thum finger to left hand
            length, info, img = handDetector.findDistance(hands[0]['center'], hands[1]['center'], img)
            # print(length)
            distStart = length
# length, info, img = handDetector.findDistance(lmList1[8], lmList2[8], img)
length, info, img = handDetector.findDistance(hands[0][‘center'], hands[1][‘center'], img)
# info gives center x and center y
# calculate the zoom range
zoom_range = int((length – distStart) // 2)
# calculate the center point so that we can place the zooming image at the center
cx, cy = info[4:] print(zoom_range)

else:
distStart = None

然后获取要放大的图像的高度和宽度,并计算图像的新高度和宽度。这有点棘手,要获得新的高度和宽度,我们需要将图像之前的高度和宽度添加到缩放范围并执行向下取整除法,然后乘以 2。

然后我们可以动态找到放置缩放的位置图像(这里:img[cy – newH // 2:cy + newH // 2, cx – newW // 2:cx + newW // 2])。

但是还有一个问题,如果缩放后的图像低于窗口边距,则会出错,为了解决这个问题,我们将使用 try 和 except。然后显示输出。

try:
    h, w, _ = new_img.shape
# new height and new width
newH, newW = ((h + zoom_range) // 2) * 2, ((w + zoom_range) // 2) * 2
new_img = cv2.resize(new_img, (newW, newH))

# we want the zooming image to be center and place it approx at the center
img[cy – newH // 2:cy + newH // 2, cx – newW // 2:cx + newW // 2] = new_img

except:
pass

# display output
cv2.imshow(‘output', img)
cv2.waitKey(1)

完整的代码也可以在这个 GitHub 中找到

结论

这就是这篇关于使用 OpenCV 进行虚拟缩放的博客的内容。如果你想即兴发挥,让它更有趣,你可以在屏幕上保留一些图像,每次选择一个并放大它,或者你可以创建不同的形状,使用不同的手势来让它变大或变小。这就是我们如何使用 OpenCV 实现虚拟缩放。

到此这篇关于Python使用OpenCV实现虚拟缩放效果的文章就介绍到这了,更多相关Python OpenCV虚拟缩放内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • opencv实现图像缩放效果

    本文实例为大家分享了opencv实现图像缩放效果的具体代码,供大家参考,具体内容如下 图像缩放: 图像缩放即对图像的大小进行调整,即放大或者缩小 cv2.resize(src,dsize,fx=0,fy=0,interpolation=cv2.INTER_LINEAR) 参数: 实现代码: import cv2 as cv import matplotlib.pyplot as plt # 中文显示配置 plt.rcParams['font.sans-serif']=['SimHei'] # 用

  • Python3+OpenCV2实现图像的几何变换(平移、镜像、缩放、旋转、仿射)

    前言 总结一下最近看的关于opencv图像几何变换的一些笔记. 这是原图: 1.平移 import cv2 import numpy as np img = cv2.imread("image0.jpg", 1) imgInfo = img.shape height = imgInfo[0] width = imgInfo[1] mode = imgInfo[2] dst = np.zeros(imgInfo, np.uint8) for i in range( height ): f

  • Python OpenCV之图片缩放的实现(cv2.resize)

    OpenCV函数原型: cv2.resize(InputArray src, OutputArray dst, Size, fx, fy, interpolation) 参数解释: InputArray src 输入图片 OutputArray dst 输出图片 Size 输出图片尺寸 fx, fy 沿x轴,y轴的缩放系数 interpolation 插入方式 interpolation 选项所用的插值方法: INTER_NEAREST 最近邻插值 INTER_LINEAR 双线性插值(默认设置

  • OpenCV图像缩放resize各种插值方式的比较实现

    1. resize函数说明 OpenCV提供了resize函数来改变图像的大小,函数原型如下: void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR ); 参数说明: src:输入,原图像,即待改变大小的图像:dst:输出,改变大小之后的图像,这个图像和原图像具有相同的内容,只是大小和原图像不一样而已:dsize:输出图像的

  • 使用OpenCV实现仿射变换—缩放功能

    前面介绍怎么样实现平移的功能,接着下来演示缩放功能.比如在一个文档里插入一个图片,发现这个图片占用太大的面积了,要把它缩小,才放得下,与文字的比例才合适.这样的需求,就需要使用仿射变换的缩放功能,而实现这个功能的方法,就是采用齐次坐标的变换功式: 可看到最后一条公式,就是缩放公式,要实现二维图像的缩放,需要构造前面那个缩放矩阵,因此在OpenCV也是构造一个2X3的矩阵.不过,在缩放变换里,要考虑另外一个问题,比如图片放大之后,原来两点像素的距离变大了,在中间留下了空间,那么中间空白的像素点怎么

  • Python使用OpenCV实现虚拟缩放效果

    目录 介绍 要求 目标 构建 结论 介绍 OpenCV 彻底改变了整个图像处理领域.从图像分类到对象检测,我们不仅可以使用 OpenCV 库做一些很酷的事情,而且还可以构建一流的应用程序. 今天我们要实现一个有趣的东西,它是手机或电脑中的一种功能,即图像缩放.但在这里,它将是实时对帧上所需的图像进行虚拟缩放. 要求 对于这个项目,我们将使用 OpenCV 库和另一个名为 Cvzone 的库来使用虚拟缩放. CVZone 它是一个建立在 OpenCV 和 MediaPipe 之上的库.它使事情变得

  • python在OpenCV里实现投影变换效果

    前面学习了仿射变换,是经常使用到的变换,也很容易理解.在日常生活中,经常会遇到下面这种的情况: 仔细地观察比亚迪秦这台汽车的车牌,发现它拍照的角度不是垂直的方向,而是有一个角度,当要进行车牌识别的时候,发现字符是变形的,与电脑里比较的图片肯定有区别,因此识别不出来.这时怎么办呢?就需要经过一个投影变换才可以把车牌号纠正过来,才能进入识别过程. 好吧,到这里认识到投影变换的感性认识了,那么你又会继续考虑下一个问题,在软件里怎么样计算呢,难道还是使用仿射变换的矩阵.从这里看一下,前面闽A比较大,后面

  • Python使用OPENCV的目标跟踪算法实现自动视频标注效果

    先上效果 1.首先,要使用opencv的目标跟踪算法,必须要有opencv环境 使用:opencv==4.4.0 和 opencv-contrib-python==4.4.0.46,lxml   这三个环境包. 也可以使用以下方法进行下载 : pip install opencv-python==4.4.0 pip install opencv-contrib-python==4.4.0.4 pip install lxml 2.使用方法: (1):英文状态下的 "s" 是进行标注 (

  • Python 在OpenCV里实现仿射变换—坐标变换效果

    在现实的图像操作软件中,经常碰到的不是给出放大多少倍,而是由用户在软件的界面上选择多大的区域,或者选择几个点,那么这样情况下,怎么样来计算出变换矩阵呢?从前面知道变换矩阵是2X3的矩阵,说明有六个未知数,又有中学的代数知识知道要解决六个未知数,那么方程组至少要联立三条方程,要准备三条方程的先决条件,就是要有三组坐标.因此,只要在用户选择的区域里找到三个不同点的坐标,就可以计算出变换矩阵.如果给出三组坐标[0, 0], [200, 0], [0, 200],通过变换之后新坐标是[0, 0], [1

  • python使用opencv实现马赛克效果示例

    本文实例讲述了python使用opencv实现马赛克效果.分享给大家供大家参考,具体如下: 最近要实现opencv视频打马赛克,在网上找了一下基本是C++的实现,好在原理一样,下面给出python实现. 原理和注意点,我都写在注释里了 import cv2 ##马赛克 def do_mosaic(frame, x, y, w, h, neighbor=9): """ 马赛克的实现原理是把图像上某个像素点一定范围邻域内的所有点用邻域内左上像素点的颜色代替,这样可以模糊细节,但是

  • OpenCV利用手势识别实现虚拟拖放效果

    目录 第一步 第二步 第三步 完整代码 本文将实现一些通过手拖放一些框,我们可以使用这个技术实现一些游戏,控制机械臂等很多有趣的事情. 第一步 通过opencv设置显示框和调用摄像头显示当前画面 import cv2 cap = cv2.VideoCapture(0) cap.set(3,1280) cap.set(4,720) while True:     succes, img = cap.read()     cv2.imshow("Image", img)     cv2.w

  • Python使用OpenCV对图像进行缩放功能

    OpenCV:图片缩放和图像金字塔 对图像进行缩放的最简单方法当然是调用resize函数啦! resize函数可以将源图像精确地转化为指定尺寸的目标图像. 要缩小图像,一般推荐使用CV_INETR_AREA来插值:若要放大图像,推荐使用CV_INTER_LINEAR. 现在说说调用方式 第一种,规定好你要图片的尺寸,就是你填入你要的图片的长和高. #include<opencv2\opencv.hpp> #include<opencv2\highgui\highgui.hpp> u

  • python实现批量按比例缩放图片效果

    本文实例为大家分享了python实现批量按比例缩放图片的具体代码,供大家参考,具体内容如下 把脚本文件放在要缩放的文件夹下面. 双击运行脚本,输入要缩放的系数.脚本会在当前目录下创建一个scaledImg_xxxx文件夹,如果已经存在,会强制删除,如果删除失败会提示手动删除这个文件夹,再双击运行就可以了. resizeImg.py #!/usr/bin/python # -*- coding:utf8 -*- #author@skillart www. import os import shut

  • Python 利用OpenCV给照片换底色的示例代码

    OpenCV的全称是:Open Source Computer Vision Library.OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.相比于PIL库来说OpenCV更加强大, 可以做更多更复杂的应用,比如人脸识别等. 1. 读入并显示图片 im

随机推荐