构建高效的python requests长连接池详解

前文:

最近在搞全网的CDN刷新系统,在性能调优时遇到了requests长连接的一个问题,以前关注过长连接太多造成浪费的问题,但因为系统都是分布式扩展的,针对这种各别问题就懒得改动了。 现在开发的缓存刷新系统,对于性能还是有些敏感的,我后面会给出最优的http长连接池构建方式。

老生常谈:

python下的httpclient库哪个最好用? 我想大多数人还是会选择requests库的。原因么?也就是简单,易用!

如何蛋疼的构建reqeusts的短连接请求:

python requests库默认就是长连接的 (http 1.1, Connection: keep alive),如果单纯在requests头部去掉Connection是不靠谱的,还需要借助httplib来配合.

s = requests.Session()

del s.headers['Connection']

正确发起 http 1.0的请求姿势是:

#xiaorui.cc

import httplib
import requests

httplib.HTTPConnection._http_vsn = 10
httplib.HTTPConnection._http_vsn_str = 'HTTP/1.0'

r = requests.get('http://127.0.0.1:8888/')

服务端接收的http包体内容:

GET / HTTP/1.0
Accept-Encoding: gzip, deflate
Accept: */*
User-Agent: python-requests/2.5.1 CPython/2.7.10 Darwin/15.4.0

所谓短连接就是发送 HTTP 1.0 协议,这样web服务端当然会在send完数据后,触发close(),也就是传递 \0 字符串,达到关闭连接 ! 这里还是要吐槽一下,好多人天天说系统优化,连个基本的网络io都不优化,你还想干嘛。。。下面我们依次聊requests长连接的各种问题及性能优化。

那么requests长连接如何实现?

requests给我们提供了一个Session的长连接类,他不仅仅能实现最基本的长连接保持,还会附带服务端返回的cookie数据。 在底层是如何实现的?

把HTTP 1.0 改成 HTTP 1.1 就可以了, 如果你标明了是HTTP 1.1 ,那么有没有 Connection: keep-alive 都无所谓的。 如果 HTTP 1.0加上Connection: keep-alive ,那么server会认为你是长连接。 就这么简单 !

poll([{fd=5, events=POLLIN}], 1, 0)  = 0 (Timeout)
sendto(5, "GET / HTTP/1.1\r\nHost: www.xiaorui.cc\r\nConnection: keep-alive\r\nAccept-Encoding: gzip, deflate\r\nAccept: */*\r\nUser-Agent: python-requests/2.9.1\r\n\r\n", 144, 0, NULL, 0) = 144
fcntl(5, F_GETFL)      = 0x2 (flags O_RDWR)
fcntl(5, F_SETFL, O_RDWR)    = 0

Session的长连接支持多个主机么? 也就是我在一个服务里先后访问 a.com, b.com, c.com 那么requests session能否帮我保持连接 ?

答案很明显,当然是可以的!

但也仅仅是可以一用,但他的实现有很多的槽点。比如xiaorui.cc的主机上还有多个虚拟主机,那么会出现什么情况么? 会不停的创建新连接,因为reqeusts的urllib3连接池管理是基于host的,这个host可能是域名,也可能ip地址,具体是什么,要看你的输入。

strace -p 25449 -e trace=connect
Process 25449 attached - interrupt to quit
connect(13, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_addr("61.216.13.196")}, 16) = 0
connect(8, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr("10.202.72.116")}, 16) = 0
connect(8, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_addr("125.211.204.141")}, 16) = 0
connect(8, {sa_family=AF_UNSPEC, sa_data="\0\0\0\0\0\0\0\0\0\0\0\0\0\0"}, 16) = 0
connect(8, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_addr("153.37.238.190")}, 16) = 0
connect(8, {sa_family=AF_UNSPEC, sa_data="\0\0\0\0\0\0\0\0\0\0\0\0\0\0"}, 16) = 0
connect(8, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_addr("157.255.128.103")}, 16) = 0
connect(8, {sa_family=AF_UNSPEC, sa_data="\0\0\0\0\0\0\0\0\0\0\0\0\0\0"}, 16) = 0
connect(8, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_addr("139.215.203.190")}, 16) = 0
connect(8, {sa_family=AF_UNSPEC, sa_data="\0\0\0\0\0\0\0\0\0\0\0\0\0\0"}, 16) = 0
connect(8, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_addr("42.56.76.104")}, 16) = 0
connect(8, {sa_family=AF_UNSPEC, sa_data="\0\0\0\0\0\0\0\0\0\0\0\0\0\0"}, 16) = 0
connect(8, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_addr("42.236.125.104")}, 16) = 0
connect(8, {sa_family=AF_UNSPEC, sa_data="\0\0\0\0\0\0\0\0\0\0\0\0\0\0"}, 16) = 0
connect(8, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_addr("110.53.246.11")}, 16) = 0
connect(8, {sa_family=AF_UNSPEC, sa_data="\0\0\0\0\0\0\0\0\0\0\0\0\0\0"}, 16) = 0
connect(8, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_addr("36.248.26.191")}, 16) = 0
connect(8, {sa_family=AF_UNSPEC, sa_data="\0\0\0\0\0\0\0\0\0\0\0\0\0\0"}, 16) = 0
connect(8, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_addr("125.211.204.151")}, 16) = 0

又比如你可能都是访问同一个域名,但是子域名不一样,例子 a.xiaorui.cc, b.xiaorui.cc, c.xiaorui.cc, xxxx.xiaorui.cc,那么会造成什么问题? 哪怕IP地址是一样的,因为域名不一样,那么requests session还是会帮你实例化长连接。

python 24899 root 3u IPv4 27187722  0t0  TCP 101.200.80.162:59576->220.181.105.185:http (ESTABLISHED)
python 24899 root 4u IPv4 27187725  0t0  TCP 101.200.80.162:54622->101.200.80.162:http (ESTABLISHED)
python 24899 root 5u IPv4 27187741  0t0  TCP 101.200.80.162:59580->220.181.105.185:http (ESTABLISHED)
python 24899 root 6u IPv4 27187744  0t0  TCP 101.200.80.162:59581->220.181.105.185:http (ESTABLISHED)
python 24899 root 7u IPv4 27187858  0t0  TCP localhost:50964->localhost:http (ESTABLISHED)
python 24899 root 8u IPv4 27187880  0t0  TCP 101.200.80.162:54630->101.200.80.162:http (ESTABLISHED)
python 24899 root 9u IPv4 27187921  0t0  TCP 101.200.80.162:54632->101.200.80.162:http (ESTABLISHED)

如果是同一个二级域名,不同的url会发生呢? 是我们要的结果,只需要一个连接就可以了。

import requests
import time

s = requests.Session()
while 1:
 r = s.get('http://a.xiaorui.cc/1')
 r = s.get('http://a.xiaorui.cc/2')
 r = s.get('http://a.xiaorui.cc/3')

我们可以看到该进程只实例化了一个长连接。

# xiaorui.cc

python 27173 root 2u CHR 136,11  0t0  14 /dev/pts/11
python 27173 root 3u IPv4 27212480  0t0  TCP 101.200.80.162:36090->220.181.105.185:http (ESTABLISHED)
python 27173 root 12r CHR  1,9  0t0 3871 /dev/urandom

那么requests还有一个不是问题的性能问题。。。

requests session是可以保持长连接的,但他能保持多少个长连接? 10个长连接! session内置一个连接池,requests库默认值为10个长连接。

requests.adapters.HTTPAdapter(pool_connections=100, pool_maxsize=100)

一般来说,单个session保持10个长连接是绝对够用了,但如果你是那种social爬虫呢?这么多域名只共用10个长连接肯定不够的。

python 28484 root 3u IPv4 27225486  0t0  TCP 101.200.80.162:54724->103.37.145.167:http (ESTABLISHED)
python 28484 root 4u IPv4 27225349  0t0  TCP 101.200.80.162:36583->120.132.34.62:https (ESTABLISHED)
python 28484 root 5u IPv4 27225490  0t0  TCP 101.200.80.162:46128->42.236.125.104:http (ESTABLISHED)
python 28484 root 6u IPv4 27225495  0t0  TCP 101.200.80.162:43162->222.240.172.228:http (ESTABLISHED)
python 28484 root 7u IPv4 27225613  0t0  TCP 101.200.80.162:37977->116.211.167.193:http (ESTABLISHED)
python 28484 root 8u IPv4 27225413  0t0  TCP 101.200.80.162:40688->106.75.67.54:http (ESTABLISHED)
python 28484 root 9u IPv4 27225417  0t0  TCP 101.200.80.162:59575->61.244.111.116:http (ESTABLISHED)
python 28484 root 10u IPv4 27225521  0t0  TCP 101.200.80.162:39199->218.246.0.222:http (ESTABLISHED)
python 28484 root 11u IPv4 27225524  0t0  TCP 101.200.80.162:46204->220.181.105.184:http (ESTABLISHED)
python 28484 root 12r CHR  1,9  0t0 3871 /dev/urandom
python 28484 root 14u IPv4 27225420  0t0  TCP 101.200.80.162:42684->60.28.124.21:http (ESTABLISHED)

让我们看看requests的连接池是如何实现的? 通过代码很容易得出Session()默认的连接数及连接池是如何构建的? 下面是requests的长连接实现源码片段。如需要再详细的实现细节,那就自己分析吧

# xiaorui.cc

class Session(SessionRedirectMixin):

 def __init__(self):
  ...
  self.max_redirects = DEFAULT_REDIRECT_LIMIT
  self.cookies = cookiejar_from_dict({})
  self.adapters = OrderedDict()
  self.mount('https://', HTTPAdapter()) # 如果没有单独配置adapter适配器,那么就临时配置一个小适配器
  self.mount('http://', HTTPAdapter()) # 根据schema来分配不同的适配器adapter,上面是https,下面是http

  self.redirect_cache = RecentlyUsedContainer(REDIRECT_CACHE_SIZE)

class HTTPAdapter(BaseAdapter):

 def __init__(self, pool_connections=DEFAULT_POOLSIZE,
     pool_maxsize=DEFAULT_POOLSIZE, max_retries=DEFAULT_RETRIES,
     pool_block=DEFAULT_POOLBLOCK):
  if max_retries == DEFAULT_RETRIES:
   self.max_retries = Retry(0, read=False)
  else:
   self.max_retries = Retry.from_int(max_retries)
  self.config = {}
  self.proxy_manager = {}

  super(HTTPAdapter, self).__init__()

  self._pool_connections = pool_connections
  self._pool_maxsize = pool_maxsize
  self._pool_block = pool_block

  self.init_poolmanager(pool_connections, pool_maxsize, block=pool_block) # 连接池管理

DEFAULT_POOLBLOCK = False #是否阻塞连接池
DEFAULT_POOLSIZE = 10 # 默认连接池
DEFAULT_RETRIES = 0 # 默认重试次数
DEFAULT_POOL_TIMEOUT = None # 超时时间

Python requests连接池是借用urllib3.poolmanager来实现的。

每一个独立的(scheme, host, port)元祖使用同一个Connection, (scheme, host, port)是从请求的URL中解析分拆出来的。

from .packages.urllib3.poolmanager import PoolManager, proxy_from_url 。

下面是 urllib3的一些精简源码, 可以看出他的连接池实现也是简单粗暴的。

# 解析url,分拆出scheme, host, port
def parse_url(url):
 """
 Example::
  >>> parse_url('http://google.com/mail/')
  Url(scheme='http', host='google.com', port=None, path='/mail/', ...)
  >>> parse_url('google.com:80')
  Url(scheme=None, host='google.com', port=80, path=None, ...)
  >>> parse_url('/foo?bar')
  Url(scheme=None, host=None, port=None, path='/foo', query='bar', ...)

 return Url(scheme, auth, host, port, path, query, fragment)

# 获取匹配的长连接
def connection_from_url(self, url, pool_kwargs=None):
 u = parse_url(url)
 return self.connection_from_host(u.host, port=u.port, scheme=u.scheme, pool_kwargs=pool_kwargs)

# 获取匹配host的长连接
def connection_from_host(self, host, port=None, scheme='http', pool_kwargs=None):
 if scheme == "https":
  return super(ProxyManager, self).connection_from_host(
   host, port, scheme, pool_kwargs=pool_kwargs)

 return super(ProxyManager, self).connection_from_host(
  self.proxy.host, self.proxy.port, self.proxy.scheme, pool_kwargs=pool_kwargs)

# 根据url的三个指标获取连接
def connection_from_pool_key(self, pool_key, request_context=None):
 with self.pools.lock:
  pool = self.pools.get(pool_key)
  if pool:
   return pool

  scheme = request_context['scheme']
  host = request_context['host']
  port = request_context['port']
  pool = self._new_pool(scheme, host, port, request_context=request_context)
  self.pools[pool_key] = pool
 return pool

# 获取长连接的主入口
def urlopen(self, method, url, redirect=True, **kw):
 u = parse_url(url)
 conn = self.connection_from_host(u.host, port=u.port, scheme=u.scheme)

这里为止,Python requests关于session连接类实现,说的算明白了。 但就requests和urllib3的连接池实现来说,还是有一些提升空间的。 但问题来了,单单靠着域名和端口会造成一些问题,至于造成什么样子的问题,我在上面已经有详细的描述了。

那么如何解决?

我们可以用 scheme + 主domain + host_ip + port 来实现长连接池的管理。

其实大多数的场景是无需这么细致的实现连接池的,但根据我们的测试的结果来看,在服务初期性能提升还是不小的。

这样既解决了域名ip轮询带来的连接重置问题,也解决了多级域名下不能共用连接的问题。

以上这篇构建高效的python requests长连接池详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python中第三方库Requests库的高级用法详解

    一.Requests库的安装 利用 pip 安装,如果你安装了pip包(一款Python包管理工具,不知道可以百度哟),或者集成环境,比如Python(x,y)或者anaconda的话,就可以直接使用pip安装Python的库. $ pip install requests 安装完成之后,下面来看一下基本的方法: #get请求方法 >>> r = requests.get('https://api.github.com/user', auth=('user', 'pass')) #打印g

  • Python3网络爬虫中的requests高级用法详解

    本节我们再来了解下 Requests 的一些高级用法,如文件上传,代理设置,Cookies 设置等等. 1. 文件上传 我们知道 Reqeuests 可以模拟提交一些数据,假如有的网站需要我们上传文件,我们同样可以利用它来上传,实现非常简单,实例如下: import requests files = {'file': open('favicon.ico', 'rb')} r = requests.post('http://httpbin.org/post', files=files) print

  • Python使用grequests(gevent+requests)并发发送请求过程解析

    前言 requests是Python发送接口请求非常好用的一个三方库,由K神编写,简单,方便上手快.但是requests发送请求是串行的,即阻塞的.发送完一条请求才能发送另一条请求. 为了提升测试效率,一般我们需要并行发送请求.这里可以使用多线程,或者协程,gevent或者aiohttp,然而使用起来,都相对麻烦. grequests是K神基于gevent+requests编写的一个并发发送请求的库,使用起来非常简单. 安装方法: pip install gevent grequests 项目地

  • 解决Python requests 报错方法集锦

    python版本和ssl版本都会导致 requests在请求https网站时候会出一些错误,最好使用新版本. 1 Python2.6x use requests 一台老Centos机器上跑着古老的应用,加了一个新模块之后报错 报错 InsecurePlatformWarning: A true SSLContext object is not available. /usr/lib/python2.6/site-packages/requests/packages/urllib3/util/ss

  • 构建高效的python requests长连接池详解

    前文: 最近在搞全网的CDN刷新系统,在性能调优时遇到了requests长连接的一个问题,以前关注过长连接太多造成浪费的问题,但因为系统都是分布式扩展的,针对这种各别问题就懒得改动了. 现在开发的缓存刷新系统,对于性能还是有些敏感的,我后面会给出最优的http长连接池构建方式. 老生常谈: python下的httpclient库哪个最好用? 我想大多数人还是会选择requests库的.原因么?也就是简单,易用! 如何蛋疼的构建reqeusts的短连接请求: python requests库默认就

  • SpringBoot HikariCP连接池详解

    目录 背景 公用池化包 Commons Pool 2 案例 JMH 测试 数据库连接池 HikariCP 结果缓存池 小结 背景 在我们平常的编码中,通常会将一些对象保存起来,这主要考虑的是对象的创建成本. 比如像线程资源.数据库连接资源或者 TCP 连接等,这类对象的初始化通常要花费比较长的时间,如果频繁地申请和销毁,就会耗费大量的系统资源,造成不必要的性能损失. 并且这些对象都有一个显著的特征,就是通过轻量级的重置工作,可以循环.重复地使用. 这个时候,我们就可以使用一个虚拟的池子,将这些资

  • Java中Spring Boot+Socket实现与html页面的长连接实例详解

    Spring Boot+Socket实现与html页面的长连接,客户端给服务器端发消息,服务器给客户端轮询发送消息,附案例源码 功能介绍 客户端给所有在线用户发送消息客户端给指定在线用户发送消息服务器给客户端发送消息(轮询方式) 注意:socket只是实现一些简单的功能,具体的还需根据自身情况,代码稍微改造下 项目搭建 项目结构图 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xml

  • Python requests库用法实例详解

    本文实例讲述了Python requests库用法.分享给大家供大家参考,具体如下: requests是Python中一个第三方库,基于 urllib,采用 Apache2 Licensed 开源协议的 HTTP 库.它比 urllib 更加方便,可以节约我们大量的工作,完全满足 HTTP 测试需求.接下来将记录一下requests的使用: 安装 要使用requests库必须先要安装: pip install requests 创建请求 通过requests库发出一个请求非常简单,首先我们先导入

  • golang实现基于channel的通用连接池详解

    前言 golang的channel除了goroutine通信之外还有很多其他的功能,本文将实现一种基于channel的通用连接池.下面话不多说了,来一起看看详细的介绍吧. 功能 * 连接池中连接类型为interface{},使得更加通用 * 链接的最大空闲时间,超时的链接将关闭丢弃,可避免空闲时链接自动失效问题 * 使用channel处理池中的链接,高效 何为通用? 连接池的实现不依赖具体的实例,而依赖某个接口,本文的连接池选用的是io.Closer接口,只要是实现了该接口的对象都可以被池管理.

  • C++如何实现定长内存池详解

    目录 1. 池化技术 2. 内存池概念 2.1 内存碎片 3. 实现定长内存池 3.1 定位new表达式(placement-new) 3.2 完整实现 总结 1. 池化技术 池是在计算机技术中经常使用的一种设计模式,其内涵在于:将程序中需要经常使用的核心资源先申请出来,放到一个池内,由程序自己管理,这样可以提高资源的使用效率,也可以保证本程序占有的资源数量. 经常使用的池技术包括内存池.线程池和连接池(数据库经常使用到)等,其中尤以内存池和线程池使用最多. 2. 内存池概念 内存池(Memor

  • Spring Boot如何使用HikariCP连接池详解

    前言 Springboot让Java开发更加美好,更加简洁,更加简单.Spring Boot 2.x中使用HikariCP作为默认的数据连接池. HikariCP使用Javassist字节码操作库来实现动态代理,优化并精简了字节码,同时内部使用 com.zaxxer.hikari.util.FastList 代替ArrayList.使用了更好的并发集合类 com.zaxxer.hikari.util.ConcurrentBag ,"号称"是目前最快的数据库连接池. 下面话不多说了,来一

  • 如何利用C++实现mysql数据库的连接池详解

    目录 为什么是mysql? 为什么要搞资源池? mysql资源池实现的案例源码 头文件:MysqlPool.h 实现文件:MysqlPool.cpp 测试函数 总结 为什么是mysql? 现在几乎所有的后台应用都要用到数据库,什么关系型的.非关系型的:正当关系的,不正当关系的:主流的和非主流的, 大到Oracle,小到sqlite,以及包括现在逐渐流行的基于物联网的时序数据库,比如涛思的TDengine,咱们中国人自己的开源时序数据库,性能杠杠滴. 凡此总总,即使没用过,也听说过,但大部分人或企

  • mybatis的动态SQL以及连接池详解

    目录 mybatis动态SQL及连接池 mybatis中的范围查询,in 连接池 动态sql与多表的连接查询 动态sql 多表的连接查询 小结 mybatis动态SQL及连接池 mybatis根据传入参数的不同来查询. <select id="findByCondition" parameterType="com.domain.User" resultType="com.domain.User">         select * f

  • python数据库如何连接SQLite详解

    目录 1. 建立与SQLite数据库的连接 1.1 建立基于内存的数据库 1.2 建立基于硬盘的数据库 1.3 基于内存和基于硬盘的区别 2. 在指定数据库里建立表结构 2.1 建立数据库表结构 2.2 查找数据 2.3 删除数据 总结 1. 建立与SQLite数据库的连接 SQLite是python自带的一款基于内存或硬盘的.开源的.关系型的轻量级数据库.这意味着无需下载安装SQLite数据库产品和对应的数据库驱动程序,可以被python语言以模块导入方式直接调用.其位置在python的安装路

随机推荐