Java 数据结构之时间复杂度与空间复杂度详解

目录
  • 算法效率
  • 时间复杂度
    • 什么是时间复杂度
    • 推导大 O 阶的方法
    • 算法情况
    • 计算冒泡排序的时间复杂度
    • 计算二分查找的时间复杂度
    • 计算阶乘递归的时间复杂度
    • 计算斐波那契递归的时间复杂度
  • 空间复杂度
    • 计算冒泡排序的空间复杂度
    • 计算斐波那契数列的空间复杂度(非递归)
    • 计算阶乘递归Factorial的时间复杂度

算法效率

在使用当中,算法效率分为两种,一是时间效率(时间复杂度),二是空间效率(空间复杂度)。时间复杂度是指程序运行的速度。空间复杂度是指一个算法所需要的额外的空间。

时间复杂度

什么是时间复杂度

计算程序运行的时间不能拿简单的时间来计算,因为不同处理器处理数据的能力是不一样的。所以只算一个大概的次数就行了,俨然就是算法中的基本操作的执行次数。用大O的渐进法来表示

例:计算 func1 的基本操作执行了几次

void func1(int N){
    int count = 0;
    for (int i = 0; i < N ; i++) {
        for (int j = 0; j < N ; j++) {
            count++;
        }
    }
    for (int k = 0; k < 2 * N ; k++) {
        count++;
    }
    int M = 10;
    while ((M--) > 0) {
        count++;
    }
    System.out.println(count);
}

func1 的基本执行次数是:F(N) = N^2 + 2*N + 10

推导大 O 阶的方法

1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

所以使用大 O 的渐进法表示之后,func1 的时间复杂度就是:O(N^2)

算法情况

因为当我们用算法计算的时候,会有最好情况和最坏情况和平均情况。我们常说的时间复杂度在 O(N) 这里的时间复杂度就是最坏情况。
最好情况就是最小的运行次数。

举例一:

void func2(int N){
    int count = 0;
    for (int k = 0; k < 2 * N ; k++) {
        count++;
    }
    int M = 10;
    while ((M--) > 0) {
        count++;
    }
    System.out.println(count);
}

这里的结果是 O(N) 因为根据时间复杂度的计算方法,去除常数,所以 2*N 就是 N 。M 是 10 也可以忽略掉。

举例二:

void func3(int N, int M) {
    int count = 0;
    for (int k = 0; k < M; k++) {
        count++;
    }
    for (int k = 0; k < N ; k++) {
        count++;
    }
    System.out.println(count);
}

这里的时间复杂度是 O(M+N) 因为 M 和 N 的值是未知的,所以是 O(M+N)

举例三:

void func4(int N) {
    int count = 0;
    for (int k = 0; k < 100; k++) {
        count++;
    }
    System.out.println(count);
}

这个的时间复杂度是 O(1) 因为循环里面是常数,所以根据大 O 渐进法,结果就是 O(1)

计算冒泡排序的时间复杂度

public static void bubbleSort(int[] arr){
    for (int i = 0; i < arr.length; i++) {
        for (int j = 0; j < arr.length - 1 - i; j++) {
            if(arr[j] > arr[j+1]){
                int tmp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = tmp;
            }
        }
    }
}

因为冒泡排序的特殊性,可能一次就排好了,也可能得一直排到最后,所以就有了最好情况和最坏情况。

最好情况:就是比较一次,就是 O(N)
最坏情况:一直排到最后,就是 O(N^2)

计算二分查找的时间复杂度

int binarySearch(int[] array, int value) {
    int begin = 0;
    int end = array.length - 1;
    while (begin <= end) {
        int mid = begin + ((end-begin) / 2);
        if (array[mid] < value)
            begin = mid + 1;
        else if (array[mid] > value)
            end = mid - 1;
        else
            return mid;
    }
    return -1;
}

因为二分查找是一半一半的找,所以每次查找之后都会把查找范围减半,比如说在一个 1 - 8 的有序数组里面查找 8 也就是查找最坏情况。图示如下:

如图,在数组当中完成二分查找需要 log2n - 1 次也就是时间复杂度是 log2n (就是 log 以 2 为底 n 的对数)

计算阶乘递归的时间复杂度

long factorial(int N) {
	return N < 2 ? N : factorial(N-1) * N;
}

计算递归的时间复杂度:递归的次数 * 每次递归执行的次数。

所以这次递归的时候,基本操作递归了 N 次,所以时间复杂度就是 O(N)

计算斐波那契递归的时间复杂度

int fibonacci(int N) {
	return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

假设 N 是 5 我们来展开求

如图:每次计算都会计算下一层,但是每次都是一边少,一边多。所以就可以直接按照每边一样来计算。如下图:

所以就有公式可以计算出每次计算的次数,就是:2 ^ (n - 1) ,所以计算的结果就是:2^\0 + 2^1 + 2^2 + 2^3……2^(n-1) = 2^n+1 所以按照大 O 渐进法来算,结果就是:2^n 。

所以斐波那契数列的时间复杂度就是:2^n 。

空间复杂度

空间复杂度衡量的是一个算法在运行过程当中占用的额外存储空间的大小,因为没必要按照字节来算,而是算变量的个数。也是用大 O 渐进法表示。

计算冒泡排序的空间复杂度

public static void bubbleSort(int[] arr){
    for (int i = 0; i < arr.length; i++) {
        for (int j = 0; j < arr.length - 1 - i; j++) {
            if(arr[j] > arr[j+1]){
                int tmp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = tmp;
            }
        }
    }
}

因为冒泡排序的变量并没有变化,使用的是额外空间是常数,所以空间复杂度是 O(1) 。

计算斐波那契数列的空间复杂度(非递归)

int[] fibonacci(int n) {
    long[] fibArray = new long[n + 1];
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; i++) {
        fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }
    return fibArray;
}

因为这里的斐波那契数列开辟了 n 个额外空间,所以空间复杂度为 O(n) 。

计算阶乘递归Factorial的时间复杂度

int factorial(int N) {
	return N < 2 ? N : factorial(N-1)*N;
}

因为是递归,每次递归都会开辟栈帧,每个栈帧占用常数个空间,所以空间复杂度就是 O(N) 。

到此这篇关于Java 数据结构之时间复杂度与空间复杂度详解的文章就介绍到这了,更多相关Java 数据结构内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java算法之时间复杂度和空间复杂度的概念和计算

    一.算法效率 算法效率分析分为两种:第一种是时间效率,第二种是空间效率.时间效率被称为时间复杂度,而空间效率被称作空间复杂度. 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间. 在计算机发展的早期,计算机的存储容量很小.所以对空间复杂度很是在乎.但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度.所以我们如今已经不需要再特别关注一个算法的空间复杂度.因为现在的内存不像以前那么贵,所以经常听到过牺牲空间来换取时间的说法 二.时间复杂度 2.1

  • 从零开始学Java之关系运算符

    目录 引言 定义 实例 注意点 举例 总结 引言 ♀ 小AD:明哥,我怎么就那么讨厌刺客,凭什么我就打不过他们,每次把我秒了. ♂ 明世隐:这是因为英雄克制,刺客就是用来对方脆皮的. ♀ 小AD:所以这个叫克制关系? ♂ 明世隐:对,但是刺客却害怕战士型英雄. ♀ 小AD:战士相对被肉克制?肉被射手克制? ♂ 明世隐:差球不多!是一种克制关系,当然不是绝对的,如果段位相差过多,就当我没说.那你跟我什么关系? ♀ 小AD:师徒?大腿? ♂ 明世隐:总之无形之中是不是有一种关系的存在 ? ♀ 小AD

  • Java 数据结构之时间复杂度与空间复杂度详解

    目录 算法效率 时间复杂度 什么是时间复杂度 推导大 O 阶的方法 算法情况 计算冒泡排序的时间复杂度 计算二分查找的时间复杂度 计算阶乘递归的时间复杂度 计算斐波那契递归的时间复杂度 空间复杂度 计算冒泡排序的空间复杂度 计算斐波那契数列的空间复杂度(非递归) 计算阶乘递归Factorial的时间复杂度 算法效率 在使用当中,算法效率分为两种,一是时间效率(时间复杂度),二是空间效率(空间复杂度).时间复杂度是指程序运行的速度.空间复杂度是指一个算法所需要的额外的空间. 时间复杂度 什么是时间

  • Java数据结构之二叉搜索树详解

    目录 前言 性质 实现 节点结构 初始化 插入节点 查找节点 删除节点 最后 前言 今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不变,做完之后,我觉得这道题将二叉搜索树特性凸显的很好,首先需要查找指定节点,然后删除节点并且保持二叉搜索树性质不变,就想利用这个题目讲讲二叉搜索树. 二叉搜索树作为一个经典的数据结构,具有链表的快速插入与删除的特点,同时查询效率也很优秀,所以应用十分广泛,例如在文件系统和数据库系统一般会采用这种数

  • Java数据结构之平衡二叉树的实现详解

    目录 定义 结点结构 查找算法 插入算法 LL 型 RR 型 LR 型 RL 型 插入方法 删除算法 概述 实例分析 代码 完整代码 定义 动机:二叉查找树的操作实践复杂度由树高度决定,所以希望控制树高,左右子树尽可能平衡. 平衡二叉树(AVL树):称一棵二叉查找树为高度平衡树,当且仅当或由单一外结点组成,或由两个子树形 Ta 和 Tb 组成,并且满足: |h(Ta) - h(Tb)| <= 1,其中 h(T) 表示树 T 的高度 Ta 和 Tb 都是高度平衡树 即:每个结点的左子树和右子树的高

  • Java 数据结构线性表之顺序存储详解原理

    目录 线性表的定义 线性表的基本运算 线性表的存储之顺序存储 定义线性表 添加元素 查找元素 删除元素 打印线性表 实现的完整代码 测试一下 线性表的定义 线性表的逻辑特征: ①有且仅有一个称为开始元素的a1,她没有前趋,仅有一个后继结点a2: ②有且仅有一个称为终端元素的an,他没有后继,只有一个直接前驱a(n-1): ③其余元素ai(2≤i≤n-1)称为内部元素,他们都有且仅有一个直接前驱a(i-1)和直接后继a(i+1). 线性表的图像表示 线性表的基本运算 线性表初始化 求表长 按索引值

  • Java数据结构通关时间复杂度和空间复杂度

    目录 算法效率 时间复杂度 空间复杂度 小结 算法效率 算法效率分析分为两种:第一种是时间效率,第二种是空间效率.时间效率被称为时间复杂度,而空间效率被 称作空间复杂度. 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额 外空间,在计算机发展的早期,计算机的存储容量很小.所以对空间复杂度很是在乎(以前是以时间换空间).但是经过计算机行业的 迅速发展,计算机的存储容量已经达到了很高的程度.所以我们如今已经不需要再特别关注一个算法的空间复 杂度(现在是以空间换时间).

  • java数据结构算法稀疏数组示例详解

    目录 一.什么是稀疏数组 二.场景用法 1.二维数组转稀疏数组思路 2.稀疏数组转二维数组思路 3.代码实现 一.什么是稀疏数组 当一个数组a中大部分元素为0,或者为同一个值,那么可以用稀疏数组b来保存数组a. 首先,稀疏数组是一个数组,然后以一种特定的方式来保存上述的数组a,具体处理方法: 记录数组a一共有几行几列 记录a中有多少个不同的值 最后记录不同值的元素所在行列,以及具体的值,放在一个小规模的数组里,以缩小程序的规模. 这个小规模的数组,就是稀疏数组. 举个栗子,左侧是一个二维数组,一

  • Java数据结构与算法入门实例详解

    第一部分:Java数据结构 要理解Java数据结构,必须能清楚何为数据结构? 数据结构: Data_Structure,它是储存数据的一种结构体,在此结构中储存一些数据,而这些数据之间有一定的关系. 而各数据元素之间的相互关系,又包括三个组成成分,数据的逻辑结构,数据的存储结构和数据运算结构. 而一个数据结构的设计过程分成抽象层.数据结构层和实现层. 数据结构在Java的语言体系中按逻辑结构可以分为两大类:线性数据结构和非线性数据结构. 一.Java数据结构之:线性数据结构 线性数据结构:常见的

  • java数据结构排序算法之归并排序详解

    本文实例讲述了java数据结构排序算法之归并排序.分享给大家供大家参考,具体如下: 在前面说的那几种排序都是将一组记录按关键字大小排成一个有序的序列,而归并排序的思想是:基于合并,将两个或两个以上有序表合并成一个新的有序表 归并排序算法:假设初始序列含有n个记录,首先将这n个记录看成n个有序的子序列,每个子序列长度为1,然后两两归并,得到n/2个长度为2(n为奇数的时候,最后一个序列的长度为1)的有序子序列.在此基础上,再对长度为2的有序子序列进行亮亮归并,得到若干个长度为4的有序子序列.如此重

  • java数据结构与算法之插入排序详解

    本文实例讲述了java数据结构与算法之插入排序.分享给大家供大家参考,具体如下: 复习之余,就将数据结构中关于排序的这块知识点整理了一下,写下来是想与更多的人分享,最关键的是做一备份,为方便以后查阅. 排序 1.概念: 有n个记录的序列{R1,R2,.......,Rn}(此处注意:1,2,n 是下表序列,以下是相同的作用),其相应关键字的序列是{K1,K2,.........,Kn}.通过排序,要求找出当前下标序列1,2,......,n的一种排列p1,p2,........pn,使得相应关键

  • java数据结构与算法之冒泡排序详解

    本文实例讲述了java数据结构与算法之冒泡排序.分享给大家供大家参考,具体如下: 前面文章讲述的排序算法都是基于插入类的排序,这篇文章开始介绍交换类的排序算法,即:冒泡排序.快速排序(冒泡排序的改进). 交换类的算法:通过交换逆序元素进行排序的方法. 冒泡排序:反复扫描待排序记录序列,在扫描的过程中,顺次比较相邻的两个元素的大小,若逆序就交换位置. 算法实现代码如下: package exp_sort; public class BubbleSort { public static void b

随机推荐