Python 存取npy格式数据实例

数据处理的时候主要通过两个函数

(1):np.save(“test.npy”,数据结构) ----存数据

(2):data =np.load('test.npy") ----取数据

给2个例子如下(存列表)

1、

z = [[[1, 2, 3], ['w']], [[1, 2, 3], ['w']]]
np.save('test.npy', z)
x = np.load('test.npy')

x:
->array([[list([1, 2, 3]), list(['w'])],
    [list([1, 2, 3]), list(['w'])]], dtype=object)

2、存字典

x
-> {0: 'wpy', 1: 'scg'}
np.save('test.npy',x)
x = np.load('test.npy')
x
->array({0: 'wpy', 1: 'scg'}, dtype=object)

3、在存为字典格式读取后,需要先调用如下语句

data.item()

将数据numpy.ndarray对象转换为dict

补充知识:python读取mat或npy文件以及将mat文件保存为npy文件(或npy保存为mat)的方法

读取mat文件并存为npy格式文件

具体见代码,注意h5py的转置问题

import numpy as np
from scipy import io

mat = io.loadmat('yourfile.mat')
# 如果报错:Please use HDF reader for matlab v7.3 files
# 改为下一种方式读取
import h5py
mat = h5py.File('yourfile.mat')

# mat文件里可能有多个cell,各对应着一个dataset

# 可以用keys方法查看cell的名字, 现在要用list(mat.keys()),
# 另外,读取要用data = mat.get('名字'), 然后可以再用Numpy转为array
print(mat.keys())
# 可以用values方法查看各个cell的信息
print(mat.values())

# 可以用shape查看维度信息
print(mat['your_dataset_name'].shape)
# 注意,这里看到的shape信息与你在matlab打开的不同
# 这里的矩阵是matlab打开时矩阵的转置
# 所以,我们需要将它转置回来
mat_t = np.transpose(mat['your_dataset_name'])
# mat_t 是numpy.ndarray格式

# 再将其存为npy格式文件
np.save('yourfile.npy', mat_t)

npy文件的读取很简单

import numpy as np

matrix = np.load('yourfile.npy')

可以重新读取npy文件保存为mat文件

方法一(在MATLAB双击打开时遇到了错误:Unable to read MAT-file *********.mat. Not a binary MAT-file. Try load -ASCII to read as text. ):

import numpy as np

matrix = np.load('yourfile.npy')
f = h5py.File('yourfile.mat', 'w')
f.create_dataset('dataname', data=matrix)
# 这里不会将数据转置

方法二(使用scipy):

from scipy import io

mat = np.load('rlt_gene_features.npy-layer-3-train.npy')
io.savemat('gene_features.mat', {'gene_features': mat})

以上这篇Python 存取npy格式数据实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python使用OpenPyXL处理Excel表格

    官方文档: http://openpyxl.readthedocs.io/en/default/ OpenPyXL库 --单元格样式设置 单元格样式的控制,依赖openpyxl.style包,其中定义有样式需要的对象,引入样式相关: from openpyxl.styles import PatternFill, Font, Alignment, Border, SideBorder 边框 Side 边线PatternFill 填充Font 字体Aignment 对齐 以上基本可满足需要 基本用

  • Python openpyxl模块实现excel读写操作

    在日常的测试工作中,我们的测试用例一般都是保存在Excel文件中,当然也有一些公司会使用Xmind来编写测试用例,那么为什么我们在这里只是讲解Excel的读写的,因为Excel它是一种更规范.更常用的测试用例格式,对于自动化测试来说,如果我们将用例保存在Excel中,那么剩下的问题就是使用什么样的奇数去解析用例获取测试数据了,下面我们将为大家介绍openpyxl的具体用法. openpyxl是一个开源项目,openpyxl模块是一个读写Excel 2010文档的Python库,如果要处理更早格式

  • python实现npy格式文件转换为txt文件操作

    如下代码会将npy的格式数据读出,并且输出来到控制台: import numpy as np ##设置全部数据,不输出省略号 import sys np.set_printoptions(threshold=sys.maxsize) boxes=np.load('./input_output/boxes.npy') print(boxes) np.savetxt('./input_output/boxes.txt',boxes,fmt='%s',newline='\n') print('----

  • python中np是做什么的

    在python中,"np"一般是指"numpy"库,是第三方库"numpy"的别名.方法:利用命令"import numpy as np"将numpy库取别名为"np". 演示: import numpy as np arr = np.array([1, 2, 3]) print(arr) 结果是: [1 2 3] 知识点扩展: Python中NumPy基础使用 ndarray(以下简称数组)是numpy的

  • python 实现两个npy档案合并

    我就废话不多说了,大家还是直接看代码吧~ old_record=numpy.load('exist.npy') temp_record=[] path = os.getcwd()+"\\database\\new" #获取当前路径 for root,dirs,files in os.walk(path): #遍历统计 for each in files: url=path+"\\"+each ... temp_record.append(temp) numpy.sa

  • Python 存取npy格式数据实例

    数据处理的时候主要通过两个函数 (1):np.save("test.npy",数据结构) ----存数据 (2):data =np.load('test.npy") ----取数据 给2个例子如下(存列表) 1. z = [[[1, 2, 3], ['w']], [[1, 2, 3], ['w']]] np.save('test.npy', z) x = np.load('test.npy') x: ->array([[list([1, 2, 3]), list(['w

  • python读取npy文件数据实例

    目录 1. 读取与保存 2. 实战案例 附:python中 .npy文件的读写操作实例 总结 Numpy binary files (NPY, NPZ) 注:.npy文件是numpy专用的二进制文件. 1. 读取与保存 import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) np.save('weight.npy', arr) loadData = np.load('weight.npy') print("----type----&qu

  • Python处理XML格式数据的方法详解

    本文实例讲述了Python处理XML格式数据的方法.分享给大家供大家参考,具体如下: 这里的操作是基于Python3平台. 在使用Python处理XML的问题上,首先遇到的是编码问题. Python并不支持gb2312,所以面对encoding="gb2312"的XML文件会出现错误.Python读取的文件本身的编码也可能导致抛出异常,这种情况下打开文件的时候就需要指定编码.此外就是XML中节点所包含的中文. 我这里呢,处理就比较简单了,只需要修改XML的encoding头部. #!/

  • Python中json格式数据的编码与解码方法详解

    本文实例讲述了Python中json格式数据的编码与解码方法.分享给大家供大家参考,具体如下: python从2.6版本开始内置了json数据格式的处理方法. 1.json格式数据编码 在python中,json数据格式编码使用json.dumps方法. #!/usr/bin/env python #coding=utf8 import json users = [{'name': 'tom', 'age': 22}, {'name': 'anny', 'age': 18}] #元组对象也可以

  • python 读取.nii格式图像实例

    我就废话不多说了,大家还是直接看代码吧~ # encoding=utf8 ''' 查看和显示nii文件 ''' import matplotlib matplotlib.use('TkAgg') from matplotlib import pylab as plt import nibabel as nib from nibabel import nifti1 from nibabel.viewers import OrthoSlicer3D example_filename = '../AD

  • python中json格式数据输出的简单实现方法

    主要使用json模块,直接导入import json即可. 小例子如下: #coding=UTF-8 import json info={} info["code"]=1 info["id"]=1900 info["name"]='张三' info["sex"]='男' list=[info,info,info] data={} data["code"]=1 data["id"]=190

  • JS解析后台返回的JSON格式数据实例

    ajax中若没有定义dataType : "json",需要eval("("+data+")")将后台传回的数据转化为JSON格式,否则不需要转换. 遍历json中的array方法: $.each jquery.each for (var i in array) { array[i]. } 以上这篇JS解析后台返回的JSON格式数据实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 如何使用Python处理HDF格式数据及可视化问题

    原文链接:https://blog.csdn.net/Fairy_Nan/article/details/105914203 HDF也是一种自描述格式文件,主要用于存储和分发科学数据.气象领域中卫星数据经常使用此格式,比如MODIS,OMI,LIS/OTD等卫星产品.对HDF格式细节感兴趣的可以Google了解一下. 这一次呢还是以Python为主,来介绍如何处理HDF格式数据.Python中有不少库都可以用来处理HDF格式数据,比如h5py可以处理HDF5格式(pandas中 read_hdf

  • javascript解析ajax返回的xml和json格式数据实例详解

    本文实例讲述了javascript解析ajax返回的xml和json格式数据.分享给大家供大家参考,具体如下: 写个例子,以备后用 一.JavaScript 解析返回的xml格式的数据: 1.javascript版本的ajax发送请求 (1).创建XMLHttpRequest对象,这个对象就是ajax请求的核心,是ajax请求和响应的信息载体,单是不同浏览器创建方式不同 (2).请求路径 (3).使用open方法绑定发送请求 (4).使用send() 方法发送请求 (5).获取服务器返回的字符串

随机推荐