Python爬虫实例——爬取美团美食数据

1.分析美团美食网页的url参数构成

1)搜索要点

美团美食,地址:北京,搜索关键词:火锅

2)爬取的url

https://bj.meituan.com/s/%E7%81%AB%E9%94%85/

3)说明

url会有自动编码中文功能。所以火锅二字指的就是这一串我们不认识的代码%E7%81%AB%E9%94%85。

通过关键词城市的url构造,解析当前url中的bj=北京,/s/后面跟搜索关键词。

这样我们就可以了解到当前url的构造。

2.分析页面数据来源(F12开发者工具)

开启F12开发者工具,并且刷新当前页面:可以看到切换到第二页时候,我们的url没有变化,网站也没有自动进行刷新跳转操作。(web中ajax技术就是在保证页面不刷新,url不变化情况下进行数据加载的技术)

此时我们需要在开发者工具中,找到xhr里面对应当前数据的响应文件。

分析到这里可以得知:我们的数据是以json格式交互。分析第二页的json文件请求地址与第三页json文件的请求地址。

第二页:https://apimobile.meituan.com/group/v4/poi/pcsearch/1?uuid=xxx&userid=-1&limit=32&offset=32&cateId=-1&q=%E7%81%AB%E9%94%85

第三页:https://apimobile.meituan.com/group/v4/poi/pcsearch/1?uuid=xxx&userid=-1&limit=32&offset=64&cateId=-1&q=%E7%81%AB%E9%94%85

对比发现:offse参数每次翻页增加32,并且limit参数是一次请求的数据量,offse是数据请求的开始元素,q是搜索关键词poi/pcsearch/1?其中的1是北京城市的id编号。

3.构造请求抓取美团美食数据

接下来直接构造请求,循环访问每一页的数据,最终代码如下。

import requests
import re

def start():
  for w in range(0, 1600, 32):
  #页码根据实际情况x32即可,我这里是设置50页为上限,为了避免设置页码过高或者数据过少情况,定义最大上限为1600-也就是50页,使用try-except来检测时候异常,异常跳过该页,一般作为无数据跳过该页处理
    try:
    # 注意uuid后面参数空余将uuid后xxx替换为自己的uuid参数
      url = 'https://apimobile.meituan.com/group/v4/poi/pcsearch/1?uuid=xxx&userid=-1&limit=32&offset='+str(w)+'&cateId=-1&q=%E7%81%AB%E9%94%85'
      #headers的数据可以在F12开发者工具下面的requests_headers中查看,需要实现选择如下headers信息
      #必要情况 请求频繁 建议增加cookie参数在headers内
      headers = {
        'Accept': '*/*',
        'Accept-Encoding': 'gzip, deflate, br',
        'Accept-Language': 'zh-CN,zh;q=0.9',
        'Connection': 'keep-alive',
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.25 Safari/537.36 Core/1.70.3741.400 QQBrowser/10.5.3863.400',
        'Host': 'apimobile.meituan.com',
        'Origin': 'https://bj.meituan.com',
        'Referer': 'https://bj.meituan.com/s/%E7%81%AB%E9%94%85/'
      }
      response = requests.get(url, headers=headers)
      #正则获取当前响应内容中的数据,因json方法无法针对店铺特有的title键值进行获取没所以采用正则
   titles = re.findall('","title":"(.*?)","address":"', response.text)
     addresses = re.findall(',"address":"(.*?)",', response.text)
     avgprices = re.findall(',"avgprice":(.*?),', response.text)
     avgscores = re.findall(',"avgscore":(.*?),',response.text)
     comments = re.findall(',"comments":(.*?),',response.text)
     #输出当前返回数据的长度 是否为32
     print(len(titles), len(addresses), len(avgprices), len(avgscores), len(comments))
     for o in range(len(titles)):
     #循环遍历每一个值 写入文件中
       title = titles[o]
       address = addresses[o]
       avgprice = avgprices[o]
       avgscore = avgscores[o]
       comment = comments[o]
       #写入本地文件
       file_data(title, address, avgprice, avgscore, comment)

#文件写入方法
def file_data(title, address, avgprice, avgscore, comment):
  data = {
        '店铺名称': title,
        '店铺地址': address,
        '平均消费价格': avgprice,
        '店铺评分': avgscore,
        '评价人数': comment
      }
  with open('美团美食.txt', 'a', encoding='utf-8')as fb:
    fb.write(json.dumps(data, ensure_ascii=False) + '\n')
    #ensure_ascii=False必须加因为json.dumps方法不关闭转码会导致出现乱码情况
if __name__ == '__main__':
  start()

运行结果如下:

本地文件:

4.总结

根据搜索词变化,城市变化,可以改变url中指定的参数来实现。同时也要记得变更headers中的指定参数,方法简单,多加练习即可熟悉ajax类型的数据抓取。

以上就是Python爬虫实例——爬取美团美食数据的详细内容,更多关于Python爬虫爬取美食数据的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python爬虫小例子——爬取51job发布的工作职位

    概述 不知从何时起,Python和爬虫就如初恋一般,情不知所起,一往而深,相信很多朋友学习Python,都是从爬虫开始,其实究其原因,不外两方面:其一Python对爬虫的支持度比较好,类库众多.其二Pyhton的语法简单,入门容易.所以两者形影相随,不离不弃,本文主要以一个简单的小例子,简述Python在爬虫方面的简单应用,仅供学习分享使用,如有不足之处,还请指正. 涉及知识点 本例主要爬取51job发布的工作职位,用到的知识点如下: 开发环境及工具:主要用到Python3.7 ,IDE为PyC

  • Python爬虫实例——scrapy框架爬取拉勾网招聘信息

    本文实例为爬取拉勾网上的python相关的职位信息, 这些信息在职位详情页上, 如职位名, 薪资, 公司名等等. 分析思路 分析查询结果页 在拉勾网搜索框中搜索'python'关键字, 在浏览器地址栏可以看到搜索结果页的url为: 'https://www.lagou.com/jobs/list_python?labelWords=&fromSearch=true&suginput=', 尝试将?后的参数删除, 发现访问结果相同. 打开Chrome网页调试工具(F12), 分析每条搜索结果

  • Python爬虫爬取博客实现可视化过程解析

    源码: from pyecharts import Bar import re import requests num=0 b=[] for i in range(1,11): link='https://www.cnblogs.com/echoDetected/default.html?page='+str(i) headers={'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,

  • python爬虫爬取笔趣网小说网站过程图解

    首先:文章用到的解析库介绍 BeautifulSoup: Beautiful Soup提供一些简单的.python式的函数用来处理导航.搜索.修改分析树等功能. 它是一个工具箱,通过解析文档为用户提供需要抓取的数据,因为简单,所以不需要多少代码就可以写出一个完整的应用程序. Beautiful Soup自动将输入文档转换为Unicode编码,输出文档转换为utf-8编码. 你不需要考虑编码方式,除非文档没有指定一个编码方式,这时,Beautiful Soup就不能自动识别编码方式了.然后,你仅仅

  • Python爬虫爬取Bilibili弹幕过程解析

    先来思考一个问题,B站一个视频的弹幕最多会有多少? 比较多的会有2000条吧,这么多数据,B站肯定是不会直接把弹幕和这个视频绑在一起的. 也就是说,有一个视频地址为https://www.bilibili.com/video/av67946325,你如果直接去requests.get这个地址,里面是不会有弹幕的,回想第一篇说到的携程异步加载数据的方式,B站的弹幕也一定是先加载当前视频的界面,然后再异步填充弹幕的. 接下来我们就可以打开火狐浏览器(平常可以火狐谷歌控制台都使用,因为谷歌里面因为插件

  • Python爬虫爬取新闻资讯案例详解

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 一个简单的Python资讯采集案例,列表页到详情页,到数据保存,保存为txt文档,网站网页结构算是比较规整,简单清晰明了,资讯新闻内容的采集和保存! 应用到的库 requests,time,re,UserAgent,etree import requests,time,re from fake_useragent import UserAgent from lxml im

  • python爬虫爬取幽默笑话网站

    爬取网站为:http://xiaohua.zol.com.cn/youmo/ 查看网页机构,爬取笑话内容时存在如下问题: 1.每页需要进入"查看更多"链接下面网页进行进一步爬取内容每页查看更多链接内容比较多,多任务进行,这里采用线程池的方式,可以有效地控制系统中并发线程的数量.避免当系统中包含有大量的并发线程时,导致系统性能下降,甚至导致 Python 解释器崩溃,引入线程池,花费时间更少,更效率. 创建线程 池threadpool.ThreadPool() 创建需要线程池处理的任务即

  • Python爬虫爬取煎蛋网图片代码实例

    这篇文章主要介绍了Python爬虫爬取煎蛋网图片代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 今天,试着爬取了煎蛋网的图片. 用到的包: urllib.request os 分别使用几个函数,来控制下载的图片的页数,获取图片的网页,获取网页页数以及保存图片到本地.过程简单清晰明了 直接上源代码: import urllib.request import os def url_open(url): req = urllib.reques

  • python爬虫 2019中国好声音评论爬取过程解析

    2019中国好声音火热开播,作为一名"假粉丝",这一季每一期都刷过了,尤其刚播出的第六期开始正式的battle.视频视频看完了,那看下大家都是怎样评论的. 1.网页分析部分 本文爬取的是腾讯视频评论,第六期的评论地址是:http://coral.qq.com/4093121984 每页有10条评论,点击"查看更多评论",可将新的评论加载进来,通过多次加载,可以发现我们要找的评论就在以v2开头的js类型的响应中. 请求为GET请求,地址是http://coral.qq

  • Python爬虫实例——爬取美团美食数据

    1.分析美团美食网页的url参数构成 1)搜索要点 美团美食,地址:北京,搜索关键词:火锅 2)爬取的url https://bj.meituan.com/s/%E7%81%AB%E9%94%85/ 3)说明 url会有自动编码中文功能.所以火锅二字指的就是这一串我们不认识的代码%E7%81%AB%E9%94%85. 通过关键词城市的url构造,解析当前url中的bj=北京,/s/后面跟搜索关键词. 这样我们就可以了解到当前url的构造. 2.分析页面数据来源(F12开发者工具) 开启F12开发

  • Python爬虫实例爬取网站搞笑段子

    众所周知,python是写爬虫的利器,今天作者用python写一个小爬虫爬下一个段子网站的众多段子. 目标段子网站为"http://ishuo.cn/",我们先分析其下段子的所在子页的url特点,可以轻易发现发现为"http://ishuo.cn/subject/"+数字, 经过测试发现,该网站的反扒机制薄弱,可以轻易地爬遍其所有站点. 现在利用python的re及urllib库将其所有段子扒下 import sys import re import urllib

  • python爬虫之爬取谷歌趋势数据

    一.前言 爬取谷歌趋势数据需要科学上网~ 二.思路 谷歌数据的爬取很简单,就是代码有点长.主要分下面几个就行了 爬取的三个界面返回的都是json数据.主要获取对应的token值和req,然后构造url请求数据就行 token值和req值都在这个链接的返回数据里.解析后得到token和req就行 socks5代理不太懂,抄网上的作业,假如了当前程序的全局代理后就可以跑了.全部代码如下 import socket import socks import requests import json im

  • python爬虫实现爬取同一个网站的多页数据的实例讲解

    对于一个网站的图片.文字音视频等,如果我们一个个的下载,不仅浪费时间,而且很容易出错.Python爬虫帮助我们获取需要的数据,这个数据是可以快速批量的获取.本文小编带领大家通过python爬虫获取获取总页数并更改url的方法,实现爬取同一个网站的多页数据. 一.爬虫的目的 从网上获取对你有需要的数据 二.爬虫过程 1.获取url(网址). 2.发出请求,获得响应. 3.提取数据. 4.保存数据. 三.爬虫功能 可以快速批量的获取想要的数据,不用手动的一个个下载(图片.文字音视频等) 四.使用py

  • Python爬虫实现爬取百度百科词条功能实例

    本文实例讲述了Python爬虫实现爬取百度百科词条功能.分享给大家供大家参考,具体如下: 爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成.爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件.爬虫的工作流程较为复杂,需要根据一定的网页分析算法过滤与主题无关的链接,保留有用的链接并将其放入等待抓取的URL队列.然后,它将根据一定的搜索策略从队列中选择下一步要抓取的网页

  • Python爬虫实现爬取京东手机页面的图片(实例代码)

    实例如下所示: __author__ = 'Fred Zhao' import requests from bs4 import BeautifulSoup import os from urllib.request import urlretrieve class Picture(): def __init__(self): self.headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleW

  • Python爬虫之爬取2020女团选秀数据

    一.先看结果 1.1创造营2020撑腰榜前三甲 创造营2020撑腰榜前三名分别是 希林娜依·高.陈卓璇 .郑乃馨 >>>df1[df1['排名']<=3 ][['排名','姓名','身高','体重','生日','出生地']] 排名 姓名 身高 体重 生日 出生地 0 1.0 希林娜依·高 NaN NaN 1998年07月31日 新疆 1 2.0 陈卓璇 168.0 42.0 1997年08月13日 贵州 2 3.0 郑乃馨 NaN NaN 1997年06月25日 泰国 1.2青春有

  • Python爬虫之爬取某文库文档数据

    一.基本开发环境 Python 3.6 Pycharm 二.相关模块的使用 import os import requests import time import re import json from docx import Document from docx.shared import Cm 安装Python并添加到环境变量,pip安装需要的相关模块即可. 三.目标网页分析 网站的文档内容,都是以图片形式存在的.它有自己的数据接口 接口链接: https://openapi.book11

  • Python爬虫之爬取我爱我家二手房数据

    一.问题说明 首先,运行下述代码,复现问题: # -*-coding:utf-8-*- import re import requests from bs4 import BeautifulSoup cookie = 'PHPSESSID=aivms4ufg15sbrj0qgboo3c6gj; HMF_CI=4d8ff20092e9832daed8fe5eb0475663812603504e007aca93e6630c00b84dc207; _ga=GA1.2.556271139.1620784

  • python爬虫之爬取百度音乐的实现方法

    在上次的爬虫中,抓取的数据主要用到的是第三方的Beautifulsoup库,然后对每一个具体的数据在网页中的selecter来找到它,每一个类别便有一个select方法.对网页有过接触的都知道很多有用的数据都放在一个共同的父节点上,只是其子节点不同.在上次爬虫中,每一类数据都要从其父类(包括其父节点的父节点)上往下寻找ROI数据所在的子节点,这样就会使爬虫很臃肿,因为很多数据有相同的父节点,每次都要重复的找到这个父节点.这样的爬虫效率很低. 因此,笔者在上次的基础上,改进了一下爬取的策略,笔者以

随机推荐