Redis BloomFilter实例讲解

目录
  • 1. 简介
  • 2. guava 实现
    • 2.1 导入依赖
    • 2.2 BloomFilterTest
    • 2.3 启动测试
    • 2.4 小节
  • 3. redisson 实现
    • 3.1 导入依赖
    • 3.2 BloomFilterWithRedisson
    • 3.3 启动测试

1. 简介

布隆过滤器是防止缓存穿透的方案之一。布隆过滤器主要是解决大规模数据下不需要精确过滤的业务场景,如检查垃圾邮件地址,爬虫URL地址去重, 解决缓存穿透问题等。

布隆过滤器:在一个存在一定数量的集合中过滤一个对应的元素,判断该元素是否一定不在集合中或者可能在集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。

2. guava 实现

google的guava工具类已经帮我们造好了轮子,通过实例来感受一下。

2.1 导入依赖

<dependency>
   <groupId>com.google.guava</groupId>
   <artifactId>guava</artifactId>
   <version>30.1.1-jre</version>
</dependency>

2.2 BloomFilterTest

import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
import lombok.extern.slf4j.Slf4j;

/**
 * 布隆过滤器简单实现
 * @author ludangxin
 * @date 2021/8/16
 */
@Slf4j
public class BloomFilterTest {
   /**
    * 预计要插入元素个数
    */
   private static final int SIZE = 1000000;
   /**
    * 误判率
    */
   private static final double FPP = 0.01;
   /**
    * 布隆过滤器
    */
   private static final BloomFilter<Integer> BLOOMFILTER = BloomFilter.create(Funnels.integerFunnel(), SIZE, FPP);

   public static void main(String[] args) {
      //插入数据
      for (int i = 0; i < 1000000; i++) {
         BLOOMFILTER.put(i);
      }
      int count = 0;
      // 过滤判断
      for (int i = 1000000; i < 3000000; i++) {
         if (BLOOMFILTER.mightContain(i)) {
            count++;
            log.info(i + "误判了");
         }
      }
      log.info("总共的误判数:" + count);
   }
}

2.3 启动测试

如上代码,我们设置了0.01的误差,过滤判断时从1000000到3000000,误判了2 * 20000000 ≈ 20339 符合预期。

.....
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999004误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999045误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999219误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999699误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999753误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999838误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999923误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 2999928误判了
21:40:21.529 [main] INFO com.ldx.redisson.controller.BloomFilterTest - 总共的误判数:20339

2.4 小节

guava的工具包虽然好用,但是数据集是存储在jvm中的,分布式环境下依然没法使用。

3. redisson 实现

3.1 导入依赖

<dependency>
   <groupId>org.redisson</groupId>
   <artifactId>redisson-spring-boot-starter</artifactId>
   <version>3.16.1</version>
</dependency>

3.2 BloomFilterWithRedisson

import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

/**
 * redisson 布隆过滤器实现
 *
 * @author ludangxin
 * @date 2021/8/16
 */
@Slf4j
@RestController
@RequestMapping("bloomFilter")
@RequiredArgsConstructor
public class BloomFilterWithRedisson {
   private final RedissonClient redissonClient;

   /**
    * 预计要插入元素个数
    */
   private static final long SIZE = 1000000L;
   /**
    * 误判率
    */
    private static final double FPP = 0.01;

   /**
    * 自定义布隆过滤器的 key
    */
   private static final String BLOOM_FILTER_KEY = "bloomFilter";

   /**
    * 向布隆过滤器中添加数据, 模拟向布隆过滤器中添加10亿个数据
    */
   @GetMapping
   public void filter() {
     // 获取布隆过滤器
      RBloomFilter<Integer> bloomFilter = redissonClient.getBloomFilter(BLOOM_FILTER_KEY);
      // 初始化,容量为100万, 误判率为0.01
      bloomFilter.tryInit(SIZE, FPP);
      // 模拟向布隆过滤器中添加100万个数据
      for (int i = 0; i < SIZE; i++) {
          bloomFilter.add(i);
      }
      int count = 0;
      // 过滤判断
      for (int i = 1000000; i < 3000000; i++) {
         if (bloomFilter.contains(i)) {
            count++;
            log.info(i + "误判了");
         }
      }
      log.info("size:" + bloomFilter.getSize());
      log.info("总共的误判数:" + count);
   }
}

3.3 启动测试

由于机器性能有限,又是单机环境,所以程序没有跑完。

但由此也可以看出,基于redis的布隆过滤器虽然解决了分布式问题,但是性能和guava bloomfilter没法比。

到此这篇关于Redis BloomFilter实例讲解的文章就介绍到这了,更多相关Redis BloomFilter实例内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Redis使用元素删除的布隆过滤器来解决缓存穿透问题

    目录 前言 缓存雪崩 解决方案 缓存击穿 解决方案 缓存穿透 解决方案 布隆过滤器(Bloom Filter) 什么是布隆过滤器 位图(Bitmap) 哈希碰撞 布隆过滤器的2大特点 fpp 布隆过滤器的实现(Guava) 布隆过滤器的如何删除 带有计数器的布隆过滤器 总结 前言 在我们日常开发中,Redis使用场景最多的就是作为缓存和分布式锁等功能来使用,而其用作缓存最大的目的就是为了降低数据库访问.但是假如我们某些数据并不存在于Redis当中,那么请求还是会直接到达数据库,而一旦在同一时间大

  • Redis实现布隆过滤器的方法及原理

    布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难. 本文将介绍布隆过滤器的原理以及Redis如何实现布隆过滤器. 应用场景 1.50亿个电话号码,现有10万个电话号码,如何判断这10万个是否已经存在在50亿个之中?(可能方案:数据库,set, hyperloglog) 2.新闻客户端看新闻时,它会不

  • Redis 中的布隆过滤器的实现

    什么是『布隆过滤器』 布隆过滤器是一个神奇的数据结构,可以用来判断一个元素是否在一个集合中.很常用的一个功能是用来去重.在爬虫中常见的一个需求:目标网站 URL 千千万,怎么判断某个 URL 爬虫是否宠幸过?简单点可以爬虫每采集过一个 URL,就把这个 URL 存入数据库中,每次一个新的 URL 过来就到数据库查询下是否访问过. select id from table where url = 'https://jaychen.cc' 但是随着爬虫爬过的 URL 越来越多,每次请求前都要访问数据

  • 布隆过滤器(bloom filter)及php和redis实现布隆过滤器的方法

    引言 在介绍布隆过滤器之前我们首先引入几个场景. 场景一 在一个高并发的计数系统中,如果一个key没有计数,此时我们应该返回0,但是访问的key不存在,相当于每次访问缓存都不起作用了.那么如何避免频繁访问数量为0的key而导致的缓存被击穿? 有人说, 将这个key的值置为0存入缓存不就行了吗?确实,这是一个好的方案.大部分情况我们都是这样做的,当访问一个不存在的key的时候,设置一个带有过期时间的标志,然后放入缓存.不过这样做的缺点也很明显,浪费内存和无法抵御随机key攻击. 场景二 在一个黑名

  • Redis BloomFilter实例讲解

    目录 1. 简介 2. guava 实现 2.1 导入依赖 2.2 BloomFilterTest 2.3 启动测试 2.4 小节 3. redisson 实现 3.1 导入依赖 3.2 BloomFilterWithRedisson 3.3 启动测试 1. 简介 布隆过滤器是防止缓存穿透的方案之一.布隆过滤器主要是解决大规模数据下不需要精确过滤的业务场景,如检查垃圾邮件地址,爬虫URL地址去重, 解决缓存穿透问题等. 布隆过滤器:在一个存在一定数量的集合中过滤一个对应的元素,判断该元素是否一定

  • laravel使用redis队列实例讲解

    1.队列配置文件是config/queue.php(这里我默认配置即可): 2. 创建迁移表(failed-table .jobs.migrations) php artisan queue:table php artisan queue:failed-table php artisan migrate ps:出现下面错误,修改对应表名即可 ps:出现下面红色错误,修改如下图string(字段,长度(随便填)) 3.创建任务 1)生成任务类: 通常,所有的任务类都保存在 app/Jobs 目录.

  • redis在java中的使用(实例讲解)

    1.首先下载jar包放到你的工程中 2.练习 package com.jianyuan.redisTest; import java.util.Iterator; import java.util.List; import java.util.Set; import redis.clients.jedis.Jedis; public class RedisTest { public static void main(String[] args) { //连接本地的Redis服务 Jedis je

  • linux安装redis和mysql的实例讲解

    linux环境下安装redis和mysql 安装redis(版本3.2.10): 下载地址:https://redis.io/download,这里我下载3.2.10 // 解压 tar zxvf redis-3.2.10.tar.gz cd redis-3.2.10 make cd src make install // 设置redis服务后台启动 cd .. vi redis.conf 设置daemonize yes // 安装redis服务 mkdir -p的意思是递归创建 即同时创建/u

  • Redis设置密码保护的实例讲解

    Redis安装好了之后,默认是没有密码保护的,为了安全要设置密码保护. 在客户端登录本地的192.168.56.56服务器 [root@shanxi src]# ./redis-cli 查看密码,当前密码为空 127.0.0.1:6379> config get requirepass 1) "requirepass" 2) "" 设置密码为 aabbcc 127.0.0.1:6379> config set requirepass "aabb

  • Redis解决库存超卖问题实例讲解

    商品和订单服务间使用MQ 商品服务的库存变化时,通过 MQ 通知订单服务库存变化. 原始的同步流程 查询商品信息 (调用商品服务) 计算总价(生成订单详情) 商品服务扣库存(调用商品服务) 订单入库( 生成订单) // 原始的MySQL同步流程 // 判断此代金券是否加入抢购 SeckillVouchers seckillVouchers = seckillVouchersMapper.selectVoucher(voucherId); AssertUtil.isTrue(seckillVouc

  • PHP使用Redis队列执行定时任务实例讲解

    Redis类: <?php namespace Utils; use Phalcon\Config\Adapter\Ini as ConfigIni; class Redis{ private static $redis1; private static $session; /** * 获取一个单例的redis对象 * @param string $name * @return \Redis */ public static function getObj($name='redis1') { t

  • Redis实现分布式锁的实例讲解

    在一个分布式系统中,会遇到一些需要对多个节点共享的资源加锁的情况,这个时候需要用到分布式锁.分布式锁通常保存在一个共享的存储系统中,可以被多个节点共享和访问. 锁的本质 简单来讲,锁可以用一个变量来表示.比如,在一个单机多线程的程序来说,某个资源的锁用一个 bit 的数据就可以表示.即 0 表示没有资源可以访问,1 表示资源的锁已被别的线程获取,不能访问. 获取和释放特定资源的锁,本质上就是为获取和修改这个变量的值.如果值是 0 则将其修改为 1,就完成了获取的过程,如果访问到的值不是 0,则获

  • Redis缓存实例超详细讲解

    目录 1 前言 1.1 什么是缓存 1.2 缓存的作用及成本 1.3 Redis缓存模型 2 给商户信息添加缓存 3 缓存更新策略 3.1 更新策略介绍 3.2 主动更新策略 3.3 主动更新策略练习 4 缓存穿透及其解决方案 4.1 缓存穿透的概念 4.2 解决方案及实现 5 缓存雪崩的概念及其解决方案 6 缓存击穿及解决方案 6.1 什么是缓存击穿 6.2 缓存击穿解决方法 6.2.1 互斥锁 6.2.2 逻辑过期 1 前言 1.1 什么是缓存 缓存就是数据交换的缓冲区(称作Cache [

  • celery在python爬虫中定时操作实例讲解

    使用定时功能对于我们想要快速获取某个数据来说,是一个非常好的方法.这样我们就不用苦苦守在电脑屏幕前,只为蹲到某个想要的东西.在之前我们已经讲过time函数进行定时操作,这算是time函数的比较基础的一个用法了.其实定时功能同样可以用celery实现,具体的方法我们往下看: 爬虫由于其特殊性,可能需要定时做增量抓取,也可能需要定时做模拟登陆,以防止cookie过期,而celery恰恰就实现了定时任务的功能.在上述基础上,我们将`tasks.py`文件改成如下内容 from celery impor

随机推荐