如何用Pythony验证万物归一(考拉咨猜想)

目录
  • 规则
  • python验证
  • 可以看到:万里挑一啊, so easy

规则

我拿到一个数number:

奇数则number= 3 * number + 1; 偶数则number= number // 2; 猜想:对于每一个正整数,如此循环,最终都能够得到1。

python验证

#!/usr/bin/env python3
# coding=utf-8
__author__ = "RidingRoad"

START_NUMBER = 1
END_NUMBER = 1000001

def collatz_seq(number):
    """
    获取到的number是奇数,则number=  3 * number + 1;
    偶数则number=  number // 2;
    如果考拉咨猜想真的成立,可以number=1,那么程序将会停止,否则,考拉咨猜想不成立
    :return:1
    """
    while True:
        if number == 1:
            return number
        else:
            # number为偶数
            if not number % 2:
                number = number // 2
            else:
                # number为奇数
                number = 3 * number + 1

if __name__ == "__main__":
    # 存放验证考拉咨猜想函数的结果
    result = []
    for i in range(START_NUMBER, END_NUMBER):
        # 验证START_NUMBER, END_NUMBER之间的数
        result.append(collatz_seq(i))
    # 显示结果
    print(result)

下面是1到1000,000的数字进行考拉咨猜想验证的结果

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,......]

可以看到:万里挑一啊, so easy

古人的猜想,如果还是基于传统的计算工具,那是多么的无聊单调,我们可以用Python来瞬间完成,感谢龟叔哦.

这里我们就不自己肉眼判断了,我们用filter

def verify(num):
    """判断结果里的不是1的数"""
    return 1 != num

if __name__ == "__main__":
    # 存放验证考拉咨猜想函数的结果
    result = []
    for i in range(START_NUMBER, END_NUMBER):
        # 验证START_NUMBER, END_NUMBER之间的数
        result.append(collatz_seq(i))
    # 使用filter对结果进行判断是否存在非1的数
    print(list(filter(verify,result)))
    """
        filter(function or None, iterable) --> filter object

        Return an iterator yielding those items of iterable for which function(item)
        is true. If function is None, return the items that are true.
    """

结果

[]

输出了一个[]空列表,说明result列表里全部为一,考拉咨猜想是可能正确的.为什么说可能,是因为我只验证了1到1000000的数字. 剩下的数字, 大家自己验证一下(可能需要很长时间哦)!

以上就是如何用Pythony验证万物归一(考拉咨猜想)的详细内容,更多关于Pythony验证万物归一(考拉咨猜想)的资料请关注我们其它相关文章!

(0)

相关推荐

  • 基于数据归一化以及Python实现方式

    数据归一化: 数据的标准化是将数据按比例缩放,使之落入一个小的特定区间,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权. 为什么要做归一化: 1)加快梯度下降求最优解的速度 如果两个特征的区间相差非常大,其所形成的等高线非常尖,很有可能走"之字型"路线(垂直等高线走),从而导致需要迭代很多次才能收敛. 2)有可能提高精度 一些分类器需要计算样本之间的距离,如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时

  • 如何基于python实现归一化处理

    这篇文章主要介绍了如何基于python实现归一化处理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.定义 归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式.主要是为了数据处理方便提出来的,把数据映射到0-1范围之内处理,更加便捷快速. 二.目的 不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比

  • python numpy 按行归一化的实例

    如下所示: import numpy as np Z=np.random.random((5,5)) Zmax,Zmin=Z.max(axis=0),Z.min(axis=0) Z=(Z-Zmin)/(Zmax-Zmin) print(Z) 以上这篇python numpy 按行归一化的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 详解python实现数据归一化处理的方式:(0,1)标准化

    在机器学习过程中,对数据的处理过程中,常常需要对数据进行归一化处理,下面介绍(0, 1)标准化的方式,简单的说,其功能就是将预处理的数据的数值范围按一定关系"压缩"到(0,1)的范围类. 通常(0, 1)标注化处理的公式为: 即将样本点的数值减去最小值,再除以样本点数值最大与最小的差,原理公式就是这么基础. 下面看看使用python语言来编程实现吧 import numpy as np import matplotlib.pyplot as plt def noramlization(

  • 对python3 一组数值的归一化处理方法详解

    1.什么是归一化: 归一化就是把一组数(大于1)化为以1为最大值,0为最小值,其余数据按百分比计算的方法.如:1,2,3.,那归一化后就是:0,0.5,1 2.归一化步骤: 如:2,4,6 (1)找出一组数里的最小值和最大值,然后就算最大值和最小值的差值 min = 2: max = 6: r = max - min = 4 (2)数组中每个数都减去最小值 2,4,6 变成 0,2,4 (3)再除去差值r 0,2,4 变成 0,0.5,1 就得出归一化后的数组了 3.用python 把一个矩阵中

  • python 实现对数据集的归一化的方法(0-1之间)

    多数情况下,需要对数据集进行归一化处理,再对数据进行分析 #首先,引入两个库 ,numpy,sklearn from sklearn.preprocessing import MinMaxScaler import numpy as np #将csv文件导入矩阵当中 my_matrix = np.loadtxt(open("xxxx.csv"),delimiter=",",skiprows=0) #将数据集进行归一化处理 scaler = MinMaxScaler(

  • Python数据预处理之数据规范化(归一化)示例

    本文实例讲述了Python数据预处理之数据规范化.分享给大家供大家参考,具体如下: 数据规范化 为了消除指标之间的量纲和取值范围差异的影响,需要进行标准化(归一化)处理,将数据按照比例进行缩放,使之落入一个特定的区域,便于进行综合分析. 数据规范化方法主要有: - 最小-最大规范化 - 零-均值规范化 数据示例 代码实现 #-*- coding: utf-8 -*- #数据规范化 import pandas as pd import numpy as np datafile = 'normali

  • python数据归一化及三种方法详解

    数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性.原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价.以下是三种常用的归一化方法: min-max标准化(Min-Max Normalization) 也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 , 1]之间.转换函数如下: 其中max为样本数据的最大值,

  • python 机器学习的标准化、归一化、正则化、离散化和白化

    机器学习的本质是从数据集中发现数据内在的特征,而数据的内在特征往往被样本的规格.分布范围等外在特征所掩盖.数据预处理正是为了最大限度地帮助机器学习模型或算法找到数据内在特征所做的一系列操作,这些操作主要包括标准化.归一化.正则化.离散化和白化等. 1 标准化 假定样本集是二维平面上的若干个点,横坐标 x 分布于区间 [0,100] 内,纵坐标 y 分布于区间 [0,1] 内.显然,样本集的 x 特征列和 y 特征列的动态范围相差巨大,对于机器学习模型(如k-近邻或 k-means 聚类)的影响也

  • python实现几种归一化方法(Normalization Method)

    数据归一化问题是数据挖掘中特征向量表达时的重要问题,当不同的特征成列在一起的时候,由于特征本身表达方式的原因而导致在绝对数值上的小数据被大数据"吃掉"的情况,这个时候我们需要做的就是对抽取出来的features vector进行归一化处理,以保证每个特征被分类器平等对待.下面我描述几种常见的Normalization Method,并提供相应的python实现(其实很简单): 1.(0,1)标准化: 这是最简单也是最容易想到的方法,通过遍历feature vector里的每一个数据,将

随机推荐