tensorflow实现读取模型中保存的值 tf.train.NewCheckpointReader

使用tf.trian.NewCheckpointReader(model_dir)

一个标准的模型文件有一下文件, model_dir就是MyModel(没有后缀)

checkpoint
Model.meta
Model.data-00000-of-00001
Model.index
import tensorflow as tf
import pprint # 使用pprint 提高打印的可读性
NewCheck =tf.train.NewCheckpointReader("model")

打印模型中的所有变量

print("debug_string:\n")
pprint.pprint(NewCheck.debug_string().decode("utf-8"))

其中有3个字段, 分别是名字, 数据类型, shape

获取变量中的值

print("get_tensor:\n")
pprint.pprint(NewCheck.get_tensor("D/conv2d/bias"))

print("get_variable_to_dtype_map\n")
pprint.pprint(NewCheck.get_variable_to_dtype_map())
print("get_variable_to_shape_map\n")
pprint.pprint(NewCheck.get_variable_to_shape_map())

以上这篇tensorflow实现读取模型中保存的值 tf.train.NewCheckpointReader就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 详解Tensorflow数据读取有三种方式(next_batch)

    Tensorflow数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端. Reading from file: 从文件中直接读取 这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow(TF)是怎么样工作的. TF的核心是用C++写的,这样的好处是运行快,缺点是调用不灵活.而Python恰好相反,所以结合两种语言的优势.涉及计算的核心算子和运行框架是用C++写的,并提供API给Python.Python调用这些A

  • Tensorflow中使用tfrecord方式读取数据的方法

    前言 本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释.并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正. 使用Tensorflow训练神经网络时,我们可以用多种方式来读取自己的数据.如果数据集比较小,而且内存足够大,可以选择直接将所有数据读进内存,然后每次取一个batch的数据出来.如果数据较多,可以每次直接从硬盘中进行读取,不过这种方式的读取效率就比较低了.此篇博客就主要讲一下Tensorflow官方推荐的一种较为高效的数据读取方式--tfre

  • 利用Tensorflow的队列多线程读取数据方式

    在tensorflow中,有三种方式输入数据 1. 利用feed_dict送入numpy数组 2. 利用队列从文件中直接读取数据 3. 预加载数据 其中第一种方式很常用,在tensorflow的MNIST训练源码中可以看到,通过feed_dict={},可以将任意数据送入tensor中. 第二种方式相比于第一种,速度更快,可以利用多线程的优势把数据送入队列,再以batch的方式出队,并且在这个过程中可以很方便地对图像进行随机裁剪.翻转.改变对比度等预处理,同时可以选择是否对数据随机打乱,可以说是

  • TensorFlow实现从txt文件读取数据

    TensorFlow从txt文件中读取数据的方法很多有种,我比较常用的是下面两种: [1]np.loadtxt import numpy as np data=np.loadtxt('ex1data1.txt',dtype='float',delimiter=',') X_train=data[:,0] y_train=data[:,1] [2]pd.read_csv import pandas as pd data=pd.read_csv("ex2data2.txt",names=[

  • tensorflow实现训练变量checkpoint的保存与读取

    1.保存变量 先创建(在tf.Session()之前)saver saver = tf.train.Saver(tf.global_variables(),max_to_keep=1) #max_to_keep这个保证只保存最后一次training的训练数据 然后在训练的循环里面 checkpoint_path = os.path.join(Path, 'model.ckpt') saver.save(session, checkpoint_path, global_step=step) #这里

  • TensorFlow入门使用 tf.train.Saver()保存模型

    关于模型保存的一点心得 saver = tf.train.Saver(max_to_keep=3) 在定义 saver 的时候一般会定义最多保存模型的数量,一般来说,如果模型本身很大,我们需要考虑到硬盘大小.如果你需要在当前训练好的模型的基础上进行 fine-tune,那么尽可能多的保存模型,后继 fine-tune 不一定从最好的 ckpt 进行,因为有可能一下子就过拟合了.但是如果保存太多,硬盘也有压力呀.如果只想保留最好的模型,方法就是每次迭代到一定步数就在验证集上计算一次 accurac

  • tensorflow实现读取模型中保存的值 tf.train.NewCheckpointReader

    使用tf.trian.NewCheckpointReader(model_dir) 一个标准的模型文件有一下文件, model_dir就是MyModel(没有后缀) checkpoint Model.meta Model.data-00000-of-00001 Model.index import tensorflow as tf import pprint # 使用pprint 提高打印的可读性 NewCheck =tf.train.NewCheckpointReader("model&quo

  • 解决tensorflow模型参数保存和加载的问题

    终于找到bug原因!记一下:还是不熟悉平台的原因造成的! Q:为什么会出现两个模型对象在同一个文件中一起运行,当直接读取他们分开运行时训练出来的模型会出错,而且总是有一个正确,一个读取错误? 而 直接在同一个文件又训练又重新加载模型预测不出错,而且更诡异的是此时用分文件里的对象加载模型不会出错? model.py,里面含有 ModelV 和 ModelP,另外还有 modelP.py 和 modelV.py 分别只含有 ModelP 和 ModeV 这两个对象,先使用 modelP.py 和 m

  • 浅谈Tensorflow模型的保存与恢复加载

    近期做了一些反垃圾的工作,除了使用常用的规则匹配过滤等手段,也采用了一些机器学习方法进行分类预测.我们使用TensorFlow进行模型的训练,训练好的模型需要保存,预测阶段我们需要将模型进行加载还原使用,这就涉及TensorFlow模型的保存与恢复加载. 总结一下Tensorflow常用的模型保存方式. 保存checkpoint模型文件(.ckpt) 首先,TensorFlow提供了一个非常方便的api,tf.train.Saver()来保存和还原一个机器学习模型. 模型保存 使用tf.trai

  • 从训练好的tensorflow模型中打印训练变量实例

    从tensorflow 训练后保存的模型中打印训变量:使用tf.train.NewCheckpointReader() import tensorflow as tf reader = tf.train.NewCheckpointReader('path/alexnet/model-330000') dic = reader.get_variable_to_shape_map() print dic 打印变量 w = reader.get_tensor("fc1/W") print t

  • tensorflow可视化Keras框架中Tensorboard使用示例

    目录 Tensorboard详解 使用例子 1.loss和acc 2.权值直方图 3.梯度直方图 实现代码 Tensorboard详解 该类在存放在keras.callbacks模块中.拥有许多参数,主要的参数如下: 1.log_dir: 用来保存Tensorboard的日志文件等内容的位置 2.histogram_freq: 对于模型中各个层计算激活值和模型权重直方图的频率. 3.write_graph: 是否在 TensorBoard 中可视化图像. 4.write_grads: 是否在 T

  • tensorflow1.0学习之模型的保存与恢复(Saver)

    将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver() 在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型.如果你想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置

  • TensorFlow——Checkpoint为模型添加检查点的实例

    1.检查点 保存模型并不限于在训练模型后,在训练模型之中也需要保存,因为TensorFlow训练模型时难免会出现中断的情况,我们自然希望能够将训练得到的参数保存下来,否则下次又要重新训练. 这种在训练中保存模型,习惯上称之为保存检查点. 2.添加保存点 通过添加检查点,可以生成载入检查点文件,并能够指定生成检查文件的个数,例如使用saver的另一个参数--max_to_keep=1,表明最多只保存一个检查点文件,在保存时使用如下的代码传入迭代次数. import tensorflow as tf

  • TensorFlow Saver:保存和读取模型参数.ckpt实例

    在使用TensorFlow的过程中,保存模型参数变量是很重要的一个环节,既可以保证训练过程信息不丢失,也可以帮助我们在需要快速恢复或使用一个模型的时候,利用之前保存好的参数之间导入,可以节省大量的训练时间.本文通过最简单的例程教大家如何保存和读取.ckpt文件. 一.保存到文件 首先是导入必要的东西: import tensorflow as tf import numpy as np 随便写几个变量: # Save to file # remember to define the same d

随机推荐