详解Golang实现请求限流的几种办法

简单的并发控制

利用 channel 的缓冲设定,我们就可以来实现并发的限制。我们只要在执行并发的同时,往一个带有缓冲的 channel 里写入点东西(随便写啥,内容不重要)。让并发的 goroutine在执行完成后把这个 channel 里的东西给读走。这样整个并发的数量就讲控制在这个 channel的缓冲区大小上。

比如我们可以用一个 bool 类型的带缓冲 channel 作为并发限制的计数器。

chLimit := make(chan bool, 1)

然后在并发执行的地方,每创建一个新的 goroutine,都往 chLimit 里塞个东西。

for i, sleeptime := range input {
    chs[i] = make(chan string, 1)
    chLimit <- true
    go limitFunc(chLimit, chs[i], i, sleeptime, timeout)
}

这里通过 go 关键字并发执行的是新构造的函数。他在执行完后,会把 chLimit的缓冲区里给消费掉一个。

limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
    Run(task_id, sleeptime, timeout, ch)
    <-chLimit
}

这样一来,当创建的 goroutine 数量到达 chLimit 的缓冲区上限后。主 goroutine 就挂起阻塞了,直到这些 goroutine 执行完毕,消费掉了 chLimit 缓冲区中的数据,程序才会继续创建新的 goroutine 。我们并发数量限制的目的也就达到了。

以下是完整代码:

package main

import (
    "fmt"
    "time"
)

func Run(task_id, sleeptime, timeout int, ch chan string) {
    ch_run := make(chan string)
    go run(task_id, sleeptime, ch_run)
    select {
    case re := <-ch_run:
        ch <- re
    case <-time.After(time.Duration(timeout) * time.Second):
        re := fmt.Sprintf("task id %d , timeout", task_id)
        ch <- re
    }
}

func run(task_id, sleeptime int, ch chan string) {

    time.Sleep(time.Duration(sleeptime) * time.Second)
    ch <- fmt.Sprintf("task id %d , sleep %d second", task_id, sleeptime)
    return
}

func main() {
    input := []int{3, 2, 1}
    timeout := 2
    chLimit := make(chan bool, 1)
    chs := make([]chan string, len(input))
    limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
        Run(task_id, sleeptime, timeout, ch)
        <-chLimit
    }
    startTime := time.Now()
    fmt.Println("Multirun start")
    for i, sleeptime := range input {
        chs[i] = make(chan string, 1)
        chLimit <- true
        go limitFunc(chLimit, chs[i], i, sleeptime, timeout)
    }

    for _, ch := range chs {
        fmt.Println(<-ch)
    }
    endTime := time.Now()
    fmt.Printf("Multissh finished. Process time %s. Number of task is %d", endTime.Sub(startTime), len(input))
}

运行结果:

Multirun start
task id 0 , timeout
task id 1 , timeout
task id 2 , sleep 1 second
Multissh finished. Process time 5s. Number of task is 3

如果修改并发限制为2:

chLimit := make(chan bool, 2)

运行结果:

Multirun start
task id 0 , timeout
task id 1 , timeout
task id 2 , sleep 1 second
Multissh finished. Process time 3s. Number of task is 3

使用计数器实现请求限流

限流的要求是在指定的时间间隔内,server 最多只能服务指定数量的请求。实现的原理是我们启动一个计数器,每次服务请求会把计数器加一,同时到达指定的时间间隔后会把计数器清零;这个计数器的实现代码如下所示:

type RequestLimitService struct {
 Interval time.Duration
 MaxCount int
 Lock     sync.Mutex
 ReqCount int
}

func NewRequestLimitService(interval time.Duration, maxCnt int) *RequestLimitService {
 reqLimit := &RequestLimitService{
  Interval: interval,
  MaxCount: maxCnt,
 }

 go func() {
  ticker := time.NewTicker(interval)
  for {
   <-ticker.C
   reqLimit.Lock.Lock()
   fmt.Println("Reset Count...")
   reqLimit.ReqCount = 0
   reqLimit.Lock.Unlock()
  }
 }()

 return reqLimit
}

func (reqLimit *RequestLimitService) Increase() {
 reqLimit.Lock.Lock()
 defer reqLimit.Lock.Unlock()

 reqLimit.ReqCount += 1
}

func (reqLimit *RequestLimitService) IsAvailable() bool {
 reqLimit.Lock.Lock()
 defer reqLimit.Lock.Unlock()

 return reqLimit.ReqCount < reqLimit.MaxCount
}

在服务请求的时候, 我们会对当前计数器和阈值进行比较,只有未超过阈值时才进行服务:

var RequestLimit = NewRequestLimitService(10 * time.Second, 5)

func helloHandler(w http.ResponseWriter, r *http.Request) {
 if RequestLimit.IsAvailable() {
  RequestLimit.Increase()
  fmt.Println(RequestLimit.ReqCount)
  io.WriteString(w, "Hello world!\n")
 } else {
  fmt.Println("Reach request limiting!")
  io.WriteString(w, "Reach request limit!\n")
 }
}

func main() {
 fmt.Println("Server Started!")
 http.HandleFunc("/", helloHandler)
 http.ListenAndServe(":8000", nil)
}

完整代码url:https://github.com/hiberabyss/JustDoIt/blob/master/RequestLimit/request_limit.go

使用golang官方包实现httpserver频率限制

使用golang来编写httpserver时,可以使用官方已经有实现好的包:

import(
    "fmt"
    "net"
    "golang.org/x/net/netutil"
)

func main() {
    l, err := net.Listen("tcp", "127.0.0.1:0")
    if err != nil {
        fmt.Fatalf("Listen: %v", err)
    }
    defer l.Close()
    l = LimitListener(l, max)

    http.Serve(l, http.HandlerFunc())

    //bla bla bla.................
}

源码如下(url : https://github.com/golang/net/blob/master/netutil/listen.go),基本思路就是为连接数计数,通过make chan来建立一个最大连接数的channel, 每次accept就+1,close时候就-1. 当到达最大连接数时,就等待空闲连接出来之后再accept。

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package netutil provides network utility functions, complementing the more
// common ones in the net package.
package netutil // import "golang.org/x/net/netutil"

import (
    "net"
 "sync"
)

// LimitListener returns a Listener that accepts at most n simultaneous
// connections from the provided Listener.
func LimitListener(l net.Listener, n int) net.Listener {
 return &limitListener{
  Listener: l,
  sem:      make(chan struct{}, n),
  done:     make(chan struct{}),
 }
}

type limitListener struct {
 net.Listener
 sem       chan struct{}
 closeOnce sync.Once     // ensures the done chan is only closed once
 done      chan struct{} // no values sent; closed when Close is called
}

// acquire acquires the limiting semaphore. Returns true if successfully
// accquired, false if the listener is closed and the semaphore is not
// acquired.
func (l *limitListener) acquire() bool {
 select {
 case <-l.done:
  return false
 case l.sem <- struct{}{}:
  return true
 }
}
func (l *limitListener) release() { <-l.sem }

func (l *limitListener) Accept() (net.Conn, error) {
    //如果sem满了,就会阻塞在这
 acquired := l.acquire()
 // If the semaphore isn't acquired because the listener was closed, expect
 // that this call to accept won't block, but immediately return an error.
 c, err := l.Listener.Accept()
 if err != nil {
  if acquired {
   l.release()
  }
  return nil, err
 }
 return &limitListenerConn{Conn: c, release: l.release}, nil
}

func (l *limitListener) Close() error {
 err := l.Listener.Close()
 l.closeOnce.Do(func() { close(l.done) })
 return err
}

type limitListenerConn struct {
 net.Conn
 releaseOnce sync.Once
 release     func()
}

func (l *limitListenerConn) Close() error {
 err := l.Conn.Close()
    //close时释放占用的sem
 l.releaseOnce.Do(l.release)
 return err
}

使用Token Bucket(令牌桶算法)实现请求限流

在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流!为了保证在业务高峰期,线上系统也能保证一定的弹性和稳定性,最有效的方案就是进行服务降级了,而限流就是降级系统最常采用的方案之一。

这里为大家推荐一个开源库https://github.com/didip/tollbooth,但是,如果您想要一些简单的、轻量级的或者只是想要学习的东西,实现自己的中间件来处理速率限制并不困难。今天我们就来聊聊如何实现自己的一个限流中间件

首先我们需要安装一个提供了 Token bucket (令牌桶算法)的依赖包,上面提到的toolbooth 的实现也是基于它实现的:

$ go get golang.org/x/time/rate

先看Demo代码的实现:

package main

import (
    "net/http"
    "golang.org/x/time/rate"
)

var limiter = rate.NewLimiter(2, 5)
func limit(next http.Handler) http.Handler {
    return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        if limiter.Allow() == false {
            http.Error(w, http.StatusText(429), http.StatusTooManyRequests)
            return
        }
        next.ServeHTTP(w, r)
    })
}

func main() {
    mux := http.NewServeMux()
    mux.HandleFunc("/", okHandler)
    // Wrap the servemux with the limit middleware.
    http.ListenAndServe(":4000", limit(mux))
}

func okHandler(w http.ResponseWriter, r *http.Request) {
    w.Write([]byte("OK"))
}

然后看看 rate.NewLimiter的源码:

算法描述:用户配置的平均发送速率为r,则每隔1/r秒一个令牌被加入到桶中(每秒会有r个令牌放入桶中),桶中最多可以存放b个令牌。如果令牌到达时令牌桶已经满了,那么这个令牌会被丢弃;

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rate provides a rate limiter.
package rate

import (
 "fmt"
 "math"
 "sync"
 "time"

 "golang.org/x/net/context"
)

// Limit defines the maximum frequency of some events.
// Limit is represented as number of events per second.
// A zero Limit allows no events.
type Limit float64

// Inf is the infinite rate limit; it allows all events (even if burst is zero).
const Inf = Limit(math.MaxFloat64)

// Every converts a minimum time interval between events to a Limit.
func Every(interval time.Duration) Limit {
 if interval <= 0 {
  return Inf
 }
 return 1 / Limit(interval.Seconds())
}

// A Limiter controls how frequently events are allowed to happen.
// It implements a "token bucket" of size b, initially full and refilled
// at rate r tokens per second.
// Informally, in any large enough time interval, the Limiter limits the
// rate to r tokens per second, with a maximum burst size of b events.
// As a special case, if r == Inf (the infinite rate), b is ignored.
// See https://en.wikipedia.org/wiki/Token_bucket for more about token buckets.
//
// The zero value is a valid Limiter, but it will reject all events.
// Use NewLimiter to create non-zero Limiters.
//
// Limiter has three main methods, Allow, Reserve, and Wait.
// Most callers should use Wait.
//
// Each of the three methods consumes a single token.
// They differ in their behavior when no token is available.
// If no token is available, Allow returns false.
// If no token is available, Reserve returns a reservation for a future token
// and the amount of time the caller must wait before using it.
// If no token is available, Wait blocks until one can be obtained
// or its associated context.Context is canceled.
//
// The methods AllowN, ReserveN, and WaitN consume n tokens.
type Limiter struct {
 //maximum token, token num per second
 limit Limit
 //burst field, max token num
 burst int
 mu    sync.Mutex
 //tokens num, change
 tokens float64
 // last is the last time the limiter's tokens field was updated
 last time.Time
 // lastEvent is the latest time of a rate-limited event (past or future)
 lastEvent time.Time
}

// Limit returns the maximum overall event rate.
func (lim *Limiter) Limit() Limit {
 lim.mu.Lock()
 defer lim.mu.Unlock()
 return lim.limit
}

// Burst returns the maximum burst size. Burst is the maximum number of tokens
// that can be consumed in a single call to Allow, Reserve, or Wait, so higher
// Burst values allow more events to happen at once.
// A zero Burst allows no events, unless limit == Inf.
func (lim *Limiter) Burst() int {
 return lim.burst
}

// NewLimiter returns a new Limiter that allows events up to rate r and permits
// bursts of at most b tokens.
func NewLimiter(r Limit, b int) *Limiter {
 return &Limiter{
  limit: r,
  burst: b,
 }
}

// Allow is shorthand for AllowN(time.Now(), 1).
func (lim *Limiter) Allow() bool {
 return lim.AllowN(time.Now(), 1)
}

// AllowN reports whether n events may happen at time now.
// Use this method if you intend to drop / skip events that exceed the rate limit.
// Otherwise use Reserve or Wait.
func (lim *Limiter) AllowN(now time.Time, n int) bool {
 return lim.reserveN(now, n, 0).ok
}

// A Reservation holds information about events that are permitted by a Limiter to happen after a delay.
// A Reservation may be canceled, which may enable the Limiter to permit additional events.
type Reservation struct {
 ok     bool
 lim    *Limiter
 tokens int
 //This is the time to action
 timeToAct time.Time
 // This is the Limit at reservation time, it can change later.
 limit Limit
}

// OK returns whether the limiter can provide the requested number of tokens
// within the maximum wait time.  If OK is false, Delay returns InfDuration, and
// Cancel does nothing.
func (r *Reservation) OK() bool {
 return r.ok
}

// Delay is shorthand for DelayFrom(time.Now()).
func (r *Reservation) Delay() time.Duration {
 return r.DelayFrom(time.Now())
}

// InfDuration is the duration returned by Delay when a Reservation is not OK.
const InfDuration = time.Duration(1<<63 - 1)

// DelayFrom returns the duration for which the reservation holder must wait
// before taking the reserved action.  Zero duration means act immediately.
// InfDuration means the limiter cannot grant the tokens requested in this
// Reservation within the maximum wait time.
func (r *Reservation) DelayFrom(now time.Time) time.Duration {
 if !r.ok {
  return InfDuration
 }
 delay := r.timeToAct.Sub(now)
 if delay < 0 {
  return 0
 }
 return delay
}

// Cancel is shorthand for CancelAt(time.Now()).
func (r *Reservation) Cancel() {
 r.CancelAt(time.Now())
 return
}

// CancelAt indicates that the reservation holder will not perform the reserved action
// and reverses the effects of this Reservation on the rate limit as much as possible,
// considering that other reservations may have already been made.
func (r *Reservation) CancelAt(now time.Time) {
 if !r.ok {
  return
 }
 r.lim.mu.Lock()
 defer r.lim.mu.Unlock()
 if r.lim.limit == Inf || r.tokens == 0 || r.timeToAct.Before(now) {
  return
 }
 // calculate tokens to restore
 // The duration between lim.lastEvent and r.timeToAct tells us how many tokens were reserved
 // after r was obtained. These tokens should not be restored.
 restoreTokens := float64(r.tokens) - r.limit.tokensFromDuration(r.lim.lastEvent.Sub(r.timeToAct))
 if restoreTokens <= 0 {
  return
 }
 // advance time to now
 now, _, tokens := r.lim.advance(now)
 // calculate new number of tokens
 tokens += restoreTokens
 if burst := float64(r.lim.burst); tokens > burst {
  tokens = burst
 }
 // update state
 r.lim.last = now
 r.lim.tokens = tokens
 if r.timeToAct == r.lim.lastEvent {
  prevEvent := r.timeToAct.Add(r.limit.durationFromTokens(float64(-r.tokens)))
  if !prevEvent.Before(now) {
   r.lim.lastEvent = prevEvent
  }
 }
 return
}

// Reserve is shorthand for ReserveN(time.Now(), 1).
func (lim *Limiter) Reserve() *Reservation {
 return lim.ReserveN(time.Now(), 1)
}

// ReserveN returns a Reservation that indicates how long the caller must wait before n events happen.
// The Limiter takes this Reservation into account when allowing future events.
// ReserveN returns false if n exceeds the Limiter's burst size.
// Usage example:
//   r, ok := lim.ReserveN(time.Now(), 1)
//   if !ok {
//     // Not allowed to act! Did you remember to set lim.burst to be > 0 ?
//   }
//   time.Sleep(r.Delay())
//   Act()
// Use this method if you wish to wait and slow down in accordance with the rate limit without dropping events.
// If you need to respect a deadline or cancel the delay, use Wait instead.
// To drop or skip events exceeding rate limit, use Allow instead.
func (lim *Limiter) ReserveN(now time.Time, n int) *Reservation {
 r := lim.reserveN(now, n, InfDuration)
 return &r
}

// Wait is shorthand for WaitN(ctx, 1).
func (lim *Limiter) Wait(ctx context.Context) (err error) {
 return lim.WaitN(ctx, 1)
}

// WaitN blocks until lim permits n events to happen.
// It returns an error if n exceeds the Limiter's burst size, the Context is
// canceled, or the expected wait time exceeds the Context's Deadline.
func (lim *Limiter) WaitN(ctx context.Context, n int) (err error) {
 if n > lim.burst {
  return fmt.Errorf("rate: Wait(n=%d) exceeds limiter's burst %d", n, lim.burst)
 }
 // Check if ctx is already cancelled
 select {
 case <-ctx.Done():
  return ctx.Err()
 default:
 }
 // Determine wait limit
 now := time.Now()
 waitLimit := InfDuration
 if deadline, ok := ctx.Deadline(); ok {
  waitLimit = deadline.Sub(now)
 }
 // Reserve
 r := lim.reserveN(now, n, waitLimit)
 if !r.ok {
  return fmt.Errorf("rate: Wait(n=%d) would exceed context deadline", n)
 }
 // Wait
 t := time.NewTimer(r.DelayFrom(now))
 defer t.Stop()
 select {
 case <-t.C:
  // We can proceed.
  return nil
 case <-ctx.Done():
  // Context was canceled before we could proceed.  Cancel the
  // reservation, which may permit other events to proceed sooner.
  r.Cancel()
  return ctx.Err()
 }
}

// SetLimit is shorthand for SetLimitAt(time.Now(), newLimit).
func (lim *Limiter) SetLimit(newLimit Limit) {
 lim.SetLimitAt(time.Now(), newLimit)
}

// SetLimitAt sets a new Limit for the limiter. The new Limit, and Burst, may be violated
// or underutilized by those which reserved (using Reserve or Wait) but did not yet act
// before SetLimitAt was called.
func (lim *Limiter) SetLimitAt(now time.Time, newLimit Limit) {
 lim.mu.Lock()
 defer lim.mu.Unlock()
 now, _, tokens := lim.advance(now)
 lim.last = now
 lim.tokens = tokens
 lim.limit = newLimit
}

// reserveN is a helper method for AllowN, ReserveN, and WaitN.
// maxFutureReserve specifies the maximum reservation wait duration allowed.
// reserveN returns Reservation, not *Reservation, to avoid allocation in AllowN and WaitN.
func (lim *Limiter) reserveN(now time.Time, n int, maxFutureReserve time.Duration) Reservation {
 lim.mu.Lock()
 defer lim.mu.Unlock()
 if lim.limit == Inf {
  return Reservation{
   ok:        true,
   lim:       lim,
   tokens:    n,
   timeToAct: now,
  }
 }
 now, last, tokens := lim.advance(now)
 // Calculate the remaining number of tokens resulting from the request.
 tokens -= float64(n)
 // Calculate the wait duration
 var waitDuration time.Duration
 if tokens < 0 {
  waitDuration = lim.limit.durationFromTokens(-tokens)
 }
 // Decide result
 ok := n <= lim.burst && waitDuration <= maxFutureReserve
 // Prepare reservation
 r := Reservation{
  ok:    ok,
  lim:   lim,
  limit: lim.limit,
 }
 if ok {
  r.tokens = n
  r.timeToAct = now.Add(waitDuration)
 }
 // Update state
 if ok {
  lim.last = now
  lim.tokens = tokens
  lim.lastEvent = r.timeToAct
 } else {
  lim.last = last
 }
 return r
}

// advance calculates and returns an updated state for lim resulting from the passage of time.
// lim is not changed.
func (lim *Limiter) advance(now time.Time) (newNow time.Time, newLast time.Time, newTokens float64) {
 last := lim.last
 if now.Before(last) {
  last = now
 }
 // Avoid making delta overflow below when last is very old.
 maxElapsed := lim.limit.durationFromTokens(float64(lim.burst) - lim.tokens)
 elapsed := now.Sub(last)
 if elapsed > maxElapsed {
  elapsed = maxElapsed
 }
 // Calculate the new number of tokens, due to time that passed.
 delta := lim.limit.tokensFromDuration(elapsed)
 tokens := lim.tokens + delta
 if burst := float64(lim.burst); tokens > burst {
  tokens = burst
 }
 return now, last, tokens
}

// durationFromTokens is a unit conversion function from the number of tokens to the duration
// of time it takes to accumulate them at a rate of limit tokens per second.
func (limit Limit) durationFromTokens(tokens float64) time.Duration {
 seconds := tokens / float64(limit)
 return time.Nanosecond * time.Duration(1e9*seconds)
}

// tokensFromDuration is a unit conversion function from a time duration to the number of tokens
// which could be accumulated during that duration at a rate of limit tokens per second.
func (limit Limit) tokensFromDuration(d time.Duration) float64 {
 return d.Seconds() * float64(limit)
}

虽然在某些情况下使用单个全局速率限制器非常有用,但另一种常见情况是基于IP地址或API密钥等标识符为每个用户实施速率限制器。我们将使用IP地址作为标识符。简单实现代码如下:

package main
import (
    "net/http"
    "sync"
    "time"
    "golang.org/x/time/rate"
)
// Create a custom visitor struct which holds the rate limiter for each
// visitor and the last time that the visitor was seen.
type visitor struct {
    limiter  *rate.Limiter
    lastSeen time.Time
}
// Change the the map to hold values of the type visitor.
var visitors = make(map[string]*visitor)
var mtx sync.Mutex
// Run a background goroutine to remove old entries from the visitors map.
func init() {
    go cleanupVisitors()
}
func addVisitor(ip string) *rate.Limiter {
    limiter := rate.NewLimiter(2, 5)
    mtx.Lock()
    // Include the current time when creating a new visitor.
    visitors[ip] = &visitor{limiter, time.Now()}
    mtx.Unlock()
    return limiter
}
func getVisitor(ip string) *rate.Limiter {
    mtx.Lock()
    v, exists := visitors[ip]
    if !exists {
        mtx.Unlock()
        return addVisitor(ip)
    }
    // Update the last seen time for the visitor.
    v.lastSeen = time.Now()
    mtx.Unlock()
    return v.limiter
}
// Every minute check the map for visitors that haven't been seen for
// more than 3 minutes and delete the entries.
func cleanupVisitors() {
    for {
        time.Sleep(time.Minute)
        mtx.Lock()
        for ip, v := range visitors {
            if time.Now().Sub(v.lastSeen) > 3*time.Minute {
                delete(visitors, ip)
            }
        }
        mtx.Unlock()
    }
}
func limit(next http.Handler) http.Handler {
    return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        limiter := getVisitor(r.RemoteAddr)
        if limiter.Allow() == false {
            http.Error(w, http.StatusText(429), http.StatusTooManyRequests)
            return
        }
        next.ServeHTTP(w, r)
    })
}

到此这篇关于详解Golang实现请求限流的几种办法的文章就介绍到这了,更多相关Golang 请求限流内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Golang 限流器的使用和实现示例

    限流器是服务中非常重要的一个组件,在网关设计.微服务.以及普通的后台应用中都比较常见.它可以限制访问服务的频次和速率,防止服务过载,被刷爆. 限流器的算法比较多,常见的比如令牌桶算法.漏斗算法.信号量等.本文主要介绍基于漏斗算法的一个限流器的实现.文本也提供了其他几种开源的实现方法. 基于令牌桶的限流器实现 在golang 的官方扩展包 time 中(github/go/time),提供了一个基于令牌桶算法的限流器的实现. 原理 令牌桶限流器,有两个概念: 令牌:每次都需要拿到令牌后,才可以访问

  • golang接口IP限流,IP黑名单,IP白名单的实例

    增加中间件 可以选择普通模式和LUA脚本模式,建议选择普通模式,实际上不需要控制的那么精确. package Middlewares import ( "github.com/gin-gonic/gin" "strconv" "time" "voteapi/pkg/app/response" "voteapi/pkg/gredis" "voteapi/pkg/util" ) const

  • Golang实现请求限流的几种办法(小结)

    在开发高并发系统时,有三把利器用来保护系统:缓存.降级和限流.那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了. 简单的并发控制 利用 channel 的缓冲设定,我们就可以来实现并发的限制.我们只要在执行并发的同时,往一个带有缓冲的 channel 里写入点东西(随便写啥,内容不重要).让并发的 goroutine在执行完成后把这个 channel 里的东西给读走.这样整个并发的数量就讲控制在这个 channel的缓冲区大小上. 比如我们可以用一个 bool

  • golang高并发限流操作 ping / telnet

    需求 当需要同时ping/telnet多个ip时,可以通过引入ping包/telnet包实现,也可以通过go调用cmd命令实现,不过后者调用效率较差,所以这里选择ping包和telnet包 还有就是高并发的问题,可以通过shell脚本或者go实现高并发,所以我选择的用go自带的协程实现,但是如果要同时处理1000+个ip,考虑到机器的性能,需要ratelimit控制开辟的go协程数量,这里主要写一下我的建议和淌过的坑 ping 参考链接: https://github.com/sparrc/go

  • 详解Golang实现请求限流的几种办法

    简单的并发控制 利用 channel 的缓冲设定,我们就可以来实现并发的限制.我们只要在执行并发的同时,往一个带有缓冲的 channel 里写入点东西(随便写啥,内容不重要).让并发的 goroutine在执行完成后把这个 channel 里的东西给读走.这样整个并发的数量就讲控制在这个 channel的缓冲区大小上. 比如我们可以用一个 bool 类型的带缓冲 channel 作为并发限制的计数器. chLimit := make(chan bool, 1) 然后在并发执行的地方,每创建一个新

  • 详解Java分布式IP限流和防止恶意IP攻击方案

    前言 限流是分布式系统设计中经常提到的概念,在某些要求不严格的场景下,使用Guava RateLimiter就可以满足.但是Guava RateLimiter只能应用于单进程,多进程间协同控制便无能为力.本文介绍一种简单的处理方式,用于分布式环境下接口调用频次管控. 如何防止恶意IP攻击某些暴露的接口呢(比如某些场景下短信验证码服务)?本文介绍一种本地缓存和分布式缓存集成方式判断远程IP是否为恶意调用接口的IP. 分布式IP限流 思路是使用redis incr命令,完成一段时间内接口请求次数的统

  • 详解Spring Cloud Gateway 限流操作

    开发高并发系统时有三把利器用来保护系统:缓存.降级和限流. API网关作为所有请求的入口,请求量大,我们可以通过对并发访问的请求进行限速来保护系统的可用性. 常用的限流算法比如有令牌桶算法,漏桶算法,计数器算法等. 在Zuul中我们可以自己去实现限流的功能 (Zuul中如何限流在我的书 <Spring Cloud微服务-全栈技术与案例解析>  中有详细讲解) ,Spring Cloud Gateway的出现本身就是用来替代Zuul的. 要想替代那肯定得有强大的功能,除了性能上的优势之外,Spr

  • 详解Redis实现限流的三种方式

    面对越来越多的高并发场景,限流显示的尤为重要. 当然,限流有许多种实现的方式,Redis具有很强大的功能,我用Redis实践了三种的实现方式,可以较为简单的实现其方式.Redis不仅仅是可以做限流,还可以做数据统计,附近的人等功能,这些可能会后续写到. 第一种:基于Redis的setnx的操作 我们在使用Redis的分布式锁的时候,大家都知道是依靠了setnx的指令,在CAS(Compare and swap)的操作的时候,同时给指定的key设置了过期实践(expire),我们在限流的主要目的就

  • 详解golang开发中http请求redirect的问题

    这两天在开发项目的时候遇到了一个问题,请求了一个URL,它会302到另一个地址,本意上只是想检查这个URL是否会做3XX的redirect跳转,结果每次reqeust都会返回最后一跳的结果.后来就看了下源码,了解下请求跳转的机制 实现代码 看下实现的简单代码 func main() { client := &http.Client{} url := "http://www.qq.com" reqest, err := http.NewRequest("GET"

  • 详解Golang开启http服务的三种方式

    前言 都说go标准库实用,Api设计简洁.这次就用go 标准库中的net/http包实现一个简洁的http web服务器,包括三种版本. v1最简单版 直接使用http.HandleFunc(partern,function(http.ResponseWriter,*http.Request){}) HandleFunc接受两个参数,第一个为路由地址,第二个为处理方法. //v1 func main() { http.HandleFunc("/", func(w http.Respon

  • 详解Golang Iris框架的基本使用

    Iris介绍 编写一次并在任何地方以最小的机器功率运行,如Android.ios.Linux和Windows等.它支持Google Go,只需一个可执行的服务即可在所有平台. Iris以简单而强大的api而闻名. 除了Iris为您提供的低级访问权限. Iris同样擅长MVC. 它是唯一一个拥有MVC架构模式丰富支持的Go Web框架,性能成本接近于零. Iris为您提供构建面向服务的应用程序的结构. 用Iris构建微服务很容易. 1. Iris框架 1.1 Golang框架   Golang常用

  • 详解Golang语言HTTP客户端实践

    目录 HTTP客户端封装 测试脚本 测试服务 最近在学习Golang语言,中间遇到一个前辈指点,有一个学习原则:Learning By Doing.跟我之前学习Java的经验高度契合.在前一段时间学习洼坑中挣扎了好几天,差点就忘记这个重要的成功经验. 那么那什么来做练习呢?当然结合当下的工作啦,所以我列了一个路线给自己,那就是从接口测试开始学起来,从功能测试到性能测试,然后掌握基本Server开发技能. 首先,得先把HTTP接口测试常用的几个功能实现了,主要是获取HTTPrequest对象,发送

  • 一文详解Golang中net/http包的实现原理

    目录 前言 http包执行流程 http包源码分析 端口监听 请求解析 路由分配 响应处理 前言 Go语言自带的net/http包提供了HTTP客户端和服务端的实现,实现一个简单的http服务非常容易,其自带了一些列结构和方法来帮助开发者简化HTTP服务开发的相关流程,因此我们不需要依赖任何第三方组件就能构建并启动一个高并发的HTTP服务器,net/http包在编写web应用中有很重要的作用,这篇文章会学习如何用 net/http 自己编写实现一个 HTTP Server 并探究其实现原理,具体

随机推荐