Python pandas库中的isnull()详解

问题描述

python的pandas库中有一个十分便利的isnull()函数,它可以用来判断缺失值,我们通过几个例子学习它的使用方法。

首先我们创建一个dataframe,其中有一些数据为缺失值。

 import pandas as pd
 import numpy as np
 df = pd.DataFrame(np.random.randint(10,99,size=(10,5)))
 df.iloc[4:6,0] = np.nan
 df.iloc[5:7,2] = np.nan
 df.iloc[7,3] = np.nan
 df.iloc[2:3,4] = np.nan

得到的结果如下所示

    0  1   2   3   4
 0 63.0 89 58.0 94.0 10.0
 1 44.0 77 66.0 54.0 14.0
 2 25.0 41 93.0 56.0  NaN
 3 43.0 26 27.0 53.0 44.0
 4  NaN 98 45.0 32.0 45.0
 5  NaN 28  NaN 72.0 10.0
 6 69.0 92  NaN 24.0 61.0
 7 51.0 22 35.0  NaN 72.0
 8 83.0 32 93.0 62.0 25.0
 9 48.0 54 83.0 30.0 79.0

我们先来运行以下isnull()看会出现什么结果

df.isnull()
    0   1   2   3   4
 0 False False False False False
 1 False False False False False
 2 False False False False  True
 3 False False False False False
 4  True False False False False
 5  True False  True False False
 6 False False  True False False
 7 False False False  True False
 8 False False False False False
 9 False False False False False

可见程序返回了布尔值,该处为缺失值,返回True,该处不为缺失值,则返回False

其它

直接使用isnull()并不能很直观的反应缺失值的信息。

我们再调用其他命令进行尝试。

df.isnull().any()
 0   True
 1  False
 2   True
 3   True
 4   True
dtype: bool

可见df.isnull().any()会判断哪些列包含缺失值,该列存在缺失值则返回True,反之False。

df.isnull().sum()
 0  2
 1  0
 2  2
 3  1
 4  1
 dtype: int64

isnull().sum()就更加直观了,它直接告诉了我们每列缺失值的数量。

以上这篇Python pandas库中的isnull()详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python pandas.DataFrame 找出有空值的行

    0.摘要 pandas中DataFrame类型中,找出所有有空值的行,可以使用.isnull()方法和.any()方法. 1.找出含有空值的行 方法:DataFrame[DataFrame.isnull().T.any()] 其中,isnull()能够判断数据中元素是否为空值:T为转置:any()判断该行是否有空值. import pandas as pd import numpy as np n = np.arange(20, dtype=float).reshape(5,4) n[2,3]

  • Python Pandas找到缺失值的位置方法

    问题描述: python pandas判断缺失值一般采用 isnull(),然而生成的却是所有数据的true/false矩阵,对于庞大的数据dataframe,很难一眼看出来哪个数据缺失,一共有多少个缺失数据,缺失数据的位置. 首先对于存在缺失值的数据,如下所示 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10,6)) # Make a few areas have NaN values df.

  • Python pandas常用函数详解

    本文研究的主要是pandas常用函数,具体介绍如下. 1 import语句 import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime import re 2 文件读取 df = pd.read_csv(path='file.csv') 参数:header=None 用默认列名,0,1,2,3... names=['A', 'B', 'C'...] 自定义列名 index_col='

  • python之pandas用法大全

    一.生成数据表 1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as pd 2.导入CSV或者xlsx文件: df = pd.DataFrame(pd.read_csv('name.csv',header=1)) df = pd.DataFrame(pd.read_excel('name.xlsx')) 3.用pandas创建数据表: df = pd.DataFrame({"id":[1001

  • Python pandas库中的isnull()详解

    问题描述 python的pandas库中有一个十分便利的isnull()函数,它可以用来判断缺失值,我们通过几个例子学习它的使用方法. 首先我们创建一个dataframe,其中有一些数据为缺失值. import pandas as pd import numpy as np df = pd.DataFrame(np.random.randint(10,99,size=(10,5))) df.iloc[4:6,0] = np.nan df.iloc[5:7,2] = np.nan df.iloc[

  • python Pandas库read_excel()参数实例详解

    目录 1.read_excel函数原型 2.参数使用举例 2.1. io和sheet_name参数 2.2. header参数 2.3. skipfooter参数 2.5. parse_dates参数 2.6. converters参数 2.7. na_values参数 2.8. usecols参数 总结 Pandas read_excel()参数使用详解 1.read_excel函数原型 def read_excel(io, sheet_name=0, header=0, names=None

  • Python pandas库中isnull函数使用方法

    前言: python的pandas库中有⼀个⼗分便利的isnull()函数,它可以⽤来判断缺失值,我们通过⼏个例⼦学习它的使⽤⽅法.⾸先我们创建⼀个dataframe,其中有⼀些数据为缺失值. import pandas as pd import numpy as np df = pd.DataFrame(np.random.randint(10,99,size=(10,5))) df.iloc[4:6,0] = np.nan df.iloc[5:7,2] = np.nan df.iloc[7,

  • Python常用库Numpy进行矩阵运算详解

    Numpy支持大量的维度数组和矩阵运算,对数组运算提供了大量的数学函数库! Numpy比Python列表更具优势,其中一个优势便是速度.在对大型数组执行操作时,Numpy的速度比Python列表的速度快了好几百.因为Numpy数组本身能节省内存,并且Numpy在执行算术.统计和线性代数运算时采用了优化算法. Numpy的另一个强大功能是具有可以表示向量和矩阵的多维数组数据结构.Numpy对矩阵运算进行了优化,使我们能够高效地执行线性代数运算,使其非常适合解决机器学习问题. 与Python列表相比

  • python 标准库原理与用法详解之os.path篇

    os中的path 查看源码会看到,在os.py中有这样几行 if 'posix' in _names: name = 'posix' linesep = '\n' from posix import * #省略若干代码 elif 'nt' in _names: from nt import * try: from nt import _exit __all__.append('_exit') except ImportError: pass import ntpath as path #...

  • Python urllib库的使用指南详解

    目录 urlopen Request User-Agent 添加更多的Header信息 添加一个特定的header 随机添加/修改User-Agent 所谓网页抓取,就是把URL地址中指定的网络资源从网络流中读取出来,保存到本地. 在Python中有很多库可以用来抓取网页,我们先学习urllib. 在 python2 中,urllib 被分为urllib,urllib2等 urlopen 我们先来段代码: # urllib_request.py # 导入urllib.request 库 impo

  • Python标准库time使用方式详解

    目录 1.time库 1.1.获取格林威治西部的夏令时地区的偏移秒数 1.2.时间函数 1.3.格式化时间.日期 1.4.单调时钟 1.time库 时间戳(timestamp)的方式:通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量 结构化时间(struct_time)方式:struct_time元组共有9个元素 格式化的时间字符串(format_string),时间格式的字符串 1.1.获取格林威治西部的夏令时地区的偏移秒数 如果该地区在格林威治东部会返回负值(

  • python第三方库pygame的使用详解

    作用:pygame一般用来做游戏 注意:1.在使用pygame提供的功能之前,需要调用init方法 2.在游戏结束前需要调用 quit 方法 pygame中的各个函数: 1.pygame.init():该函数在使用pygame时进行初始化,只有引用了该函数才能使用pygame提供的所用功能 2.pygame.Rect():该函数可以设置一张图片的位置以及大小,这是一个特殊的函数,不需要引用init函数都可以使用 3.pygame.display.set_mode(resolution=(0,0)

  • python pandas库中DataFrame对行和列的操作实例讲解

    用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是S

  • python pandas.DataFrame.loc函数使用详解

    官方函数 DataFrame.loc Access a group of rows and columns by label(s) or a boolean array. .loc[] is primarily label based, but may also be used with a boolean array. # 可以使用label值,但是也可以使用布尔值 Allowed inputs are: # 可以接受单个的label,多个label的列表,多个label的切片 A singl

随机推荐