把vgg-face.mat权重迁移到pytorch模型示例

最近使用pytorch时,需要用到一个预训练好的人脸识别模型提取人脸ID特征,想到很多人都在用用vgg-face,但是vgg-face没有pytorch的模型,于是写个vgg-face.mat转到pytorch模型的代码

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu May 10 10:41:40 2018
@author: hy
"""
import torch
import math
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
from scipy.io import loadmat
import scipy.misc as sm
import matplotlib.pyplot as plt

class vgg16_face(nn.Module):
  def __init__(self,num_classes=2622):
    super(vgg16_face,self).__init__()
    inplace = True
    self.conv1_1 = nn.Conv2d(3,64,kernel_size=(3,3),stride=(1,1),padding=(1,1))
    self.relu1_1 = nn.ReLU(inplace)
    self.conv1_2 = nn.Conv2d(64,64,kernel_size=(3,3),stride=(1,1),padding=(1,1))
    self.relu1_2 = nn.ReLU(inplace)
    self.pool1 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)

    self.conv2_1 = nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    self.relu2_1 = nn.ReLU(inplace)
    self.conv2_2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    self.relu2_2 = nn.ReLU(inplace)
    self.pool2 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)

    self.conv3_1 = nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    self.relu3_1 = nn.ReLU(inplace)
    self.conv3_2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    self.relu3_2 = nn.ReLU(inplace)
    self.conv3_3 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    self.relu3_3 = nn.ReLU(inplace)
    self.pool3 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)

    self.conv4_1 = nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    self.relu4_1 = nn.ReLU(inplace)
    self.conv4_2 = nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    self.relu4_2 = nn.ReLU(inplace)
    self.conv4_3 = nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    self.relu4_3 = nn.ReLU(inplace)
    self.pool4 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)

    self.conv5_1 = nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    self.relu5_1 = nn.ReLU(inplace)
    self.conv5_2 = nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    self.relu5_2 = nn.ReLU(inplace)
    self.conv5_3 = nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    self.relu5_3 = nn.ReLU(inplace)
    self.pool5 = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False) 

    self.fc6 = nn.Linear(in_features=25088, out_features=4096, bias=True)
    self.relu6 = nn.ReLU(inplace)
    self.drop6 = nn.Dropout(p=0.5)

    self.fc7 = nn.Linear(in_features=4096, out_features=4096, bias=True)
    self.relu7 = nn.ReLU(inplace)
    self.drop7 = nn.Dropout(p=0.5)
    self.fc8 = nn.Linear(in_features=4096, out_features=num_classes, bias=True)

    self._initialize_weights()
  def forward(self,x):
    out = self.conv1_1(x)
    x_conv1 = out
    out = self.relu1_1(out)
    out = self.conv1_2(out)
    out = self.relu1_2(out)
    out = self.pool1(out)
    x_pool1 = out

    out = self.conv2_1(out)
    out = self.relu2_1(out)
    out = self.conv2_2(out)
    out = self.relu2_2(out)
    out = self.pool2(out)
    x_pool2 = out

    out = self.conv3_1(out)
    out = self.relu3_1(out)
    out = self.conv3_2(out)
    out = self.relu3_2(out)
    out = self.conv3_3(out)
    out = self.relu3_3(out)
    out = self.pool3(out)
    x_pool3 = out

    out = self.conv4_1(out)
    out = self.relu4_1(out)
    out = self.conv4_2(out)
    out = self.relu4_2(out)
    out = self.conv4_3(out)
    out = self.relu4_3(out)
    out = self.pool4(out)
    x_pool4 = out

    out = self.conv5_1(out)
    out = self.relu5_1(out)
    out = self.conv5_2(out)
    out = self.relu5_2(out)
    out = self.conv5_3(out)
    out = self.relu5_3(out)
    out = self.pool5(out)
    x_pool5 = out

    out = out.view(out.size(0),-1)

    out = self.fc6(out)
    out = self.relu6(out)
    out = self.fc7(out)
    out = self.relu7(out)
    out = self.fc8(out)

    return out, x_pool1, x_pool2, x_pool3, x_pool4, x_pool5

  def _initialize_weights(self):
    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
        if m.bias is not None:
          m.bias.data.zero_()
      elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_()
      elif isinstance(m, nn.Linear):
        m.weight.data.normal_(0, 0.01)
        m.bias.data.zero_()

def copy(vgglayers, dstlayer,idx):
  layer = vgglayers[0][idx]
  kernel, bias = layer[0]['weights'][0][0]
  if idx in [33,35]: # fc7, fc8
    kernel = kernel.squeeze()
    dstlayer.weight.data.copy_(torch.from_numpy(kernel.transpose([1,0]))) # matrix format: axb -> bxa
  elif idx == 31: # fc6
    kernel = kernel.reshape(-1,4096)
    dstlayer.weight.data.copy_(torch.from_numpy(kernel.transpose([1,0]))) # matrix format: axb -> bxa
  else:
    dstlayer.weight.data.copy_(torch.from_numpy(kernel.transpose([3,2,1,0]))) # matrix format: axbxcxd -> dxcxbxa
  dstlayer.bias.data.copy_(torch.from_numpy(bias.reshape(-1)))

def get_vggface(vgg_path):
  """1. define pytorch model"""
  model = vgg16_face()   

  """2. get pre-trained weights and other params"""
  #vgg_path = "/home/hy/vgg-face.mat" # download from http://www.vlfeat.org/matconvnet/pretrained/
  vgg_weights = loadmat(vgg_path)
  data = vgg_weights
  meta = data['meta']
  classes = meta['classes']
  class_names = classes[0][0]['description'][0][0]
  normalization = meta['normalization']
  average_image = np.squeeze(normalization[0][0]['averageImage'][0][0][0][0])
  image_size = np.squeeze(normalization[0][0]['imageSize'][0][0])
  layers = data['layers']
  # =============================================================================
  # for idx,layer in enumerate(layers[0]):
  #   name = layer[0]['name'][0][0]
  #   print idx,name
  # """
  # 0 conv1_1
  # 1 relu1_1
  # 2 conv1_2
  # 3 relu1_2
  # 4 pool1
  # 5 conv2_1
  # 6 relu2_1
  # 7 conv2_2
  # 8 relu2_2
  # 9 pool2
  # 10 conv3_1
  # 11 relu3_1
  # 12 conv3_2
  # 13 relu3_2
  # 14 conv3_3
  # 15 relu3_3
  # 16 pool3
  # 17 conv4_1
  # 18 relu4_1
  # 19 conv4_2
  # 20 relu4_2
  # 21 conv4_3
  # 22 relu4_3
  # 23 pool4
  # 24 conv5_1
  # 25 relu5_1
  # 26 conv5_2
  # 27 relu5_2
  # 28 conv5_3
  # 29 relu5_3
  # 30 pool5
  # 31 fc6
  # 32 relu6
  # 33 fc7
  # 34 relu7
  # 35 fc8
  # 36 prob
  # """
  # =============================================================================

  """3. load weights to pytorch model"""
  copy(layers,model.conv1_1,0)
  copy(layers,model.conv1_2,2)
  copy(layers,model.conv2_1,5)
  copy(layers,model.conv2_2,7)
  copy(layers,model.conv3_1,10)
  copy(layers,model.conv3_2,12)
  copy(layers,model.conv3_3,14)
  copy(layers,model.conv4_1,17)
  copy(layers,model.conv4_2,19)
  copy(layers,model.conv4_3,21)
  copy(layers,model.conv5_1,24)
  copy(layers,model.conv5_2,26)
  copy(layers,model.conv5_3,28)
  copy(layers,model.fc6,31)
  copy(layers,model.fc7,33)
  copy(layers,model.fc8,35)
  return model,class_names,average_image,image_size

if __name__ == '__main__':
  """test"""
  vgg_path = "/home/hy/vgg-face.mat" # download from http://www.vlfeat.org/matconvnet/pretrained/
  model,class_names,average_image,image_size = get_vggface(vgg_path)
  imgpath = "/home/hy/e/avg_face.jpg"
  img = sm.imread(imgpath)
  img = sm.imresize(img,[image_size[0],image_size[1]])
  input_arr = np.float32(img)#-average_image # h,w,c
  x = torch.from_numpy(input_arr.transpose((2,0,1))) # c,h,w
  avg = torch.from_numpy(average_image) #
  avg = avg.view(3,1,1).expand(3,224,224)
  x = x - avg
  x = x.contiguous()
  x = x.view(1, x.size(0), x.size(1), x.size(2))
  x = Variable(x)
  out, x_pool1, x_pool2, x_pool3, x_pool4, x_pool5 = model(x)
#  plt.imshow(x_pool1.data.numpy()[0,45]) # plot

以上这篇把vgg-face.mat权重迁移到pytorch模型示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 简单易懂Pytorch实战实例VGG深度网络

    简单易懂Pytorch实战实例VGG深度网络 模型VGG,数据集cifar.对照这份代码走一遍,大概就知道整个pytorch的运行机制. 来源 定义模型: '''VGG11/13/16/19 in Pytorch.''' import torch import torch.nn as nn from torch.autograd import Variable cfg = {     'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M

  • pytorch自定义初始化权重的方法

    在常见的pytorch代码中,我们见到的初始化方式都是调用init类对每层所有参数进行初始化.但是,有时我们有些特殊需求,比如用某一层的权重取优化其它层,或者手动指定某些权重的初始值. 核心思想就是构造和该层权重同一尺寸的矩阵去对该层权重赋值.但是,值得注意的是,pytorch中各层权重的数据类型是nn.Parameter,而不是Tensor或者Variable. import torch import torch.nn as nn import torch.optim as optim imp

  • 把vgg-face.mat权重迁移到pytorch模型示例

    最近使用pytorch时,需要用到一个预训练好的人脸识别模型提取人脸ID特征,想到很多人都在用用vgg-face,但是vgg-face没有pytorch的模型,于是写个vgg-face.mat转到pytorch模型的代码 #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu May 10 10:41:40 2018 @author: hy """ import torc

  • 解决pytorch 模型复制的一些问题

    直接使用 model2=model1 会出现当更新model2时,model1的权重也会更新,这和自己的初始目的不同. 经评论指出可以使用: model2=copy.deepcopy(model1) 来实现深拷贝,手上没有pytorch环境,具体还没测试过,谁测试过可以和我说下有没有用. 原方法: 所有要使用模型复制可以使用如下方法. torch.save(model, "net_params.pkl") model5=Cnn(3,10) model5=torch.load('net_

  • PyTorch模型保存与加载实例详解

    目录 一个简单的例子 保存/加载 state_dict(推荐) 保存/加载整个模型 保存加载用于推理的常规Checkpoint/或继续训练 保存多个模型到一个文件 使用其他模型来预热当前模型 跨设备保存与加载模型 总结 torch.save:保存序列化的对象到磁盘,使用了Python的pickle进行序列化,模型.张量.所有对象的字典. torch.load:使用了pickle的unpacking将pickled的对象反序列化到内存中. torch.nn.Module.load_state_di

  • Pytorch模型微调fine-tune详解

    目录 2.1.为什么要微调 2.2.需要微调的情况 2.4.参数冻结---指定训练模型的部分层 2.5.参数冻结的方式 2.5.1.冻结方式1 2.5.2.冻结方式2 2.5.2.冻结方式3 2.6.修改模型参数 2.7.修改模型结构 随着深度学习的发展,在大模型的训练上都是在一些较大数据集上进行训练的,比如Imagenet-1k,Imagenet-11k,甚至是ImageNet-21k等.但我们在实际应用中,我们自己的数据集可能比较小,只有几千张照片,这时从头训练具有几千万参数的大型神经网络是

  • 将Pytorch模型从CPU转换成GPU的实现方法

    最近将Pytorch程序迁移到GPU上去的一些工作和思考 环境:Ubuntu 16.04.3 Python版本:3.5.2 Pytorch版本:0.4.0 0. 序言 大家知道,在深度学习中使用GPU来对模型进行训练是可以通过并行化其计算来提高运行效率,这里就不多谈了. 最近申请到了实验室的服务器来跑程序,成功将我简陋的程序改成了"高大上"GPU版本. 看到网上总体来说少了很多介绍,这里决定将我的一些思考和工作记录下来. 1. 如何进行迁移 由于我使用的是Pytorch写的模型,网上给

  • 浅谈pytorch 模型 .pt, .pth, .pkl的区别及模型保存方式

    我们经常会看到后缀名为.pt, .pth, .pkl的pytorch模型文件,这几种模型文件在格式上有什么区别吗? 其实它们并不是在格式上有区别,只是后缀不同而已(仅此而已),在用torch.save()函数保存模型文件时,各人有不同的喜好,有些人喜欢用.pt后缀,有些人喜欢用.pth或.pkl.用相同的torch.save()语句保存出来的模型文件没有什么不同. 在pytorch官方的文档/代码里,有用.pt的,也有用.pth的.一般惯例是使用.pth,但是官方文档里貌似.pt更多,而且官方也

  • pytorch模型的保存和加载、checkpoint操作

    其实之前笔者写代码的时候用到模型的保存和加载,需要用的时候就去度娘搜一下大致代码,现在有时间就来整理下整个pytorch模型的保存和加载,开始学习把~ pytorch的模型和参数是分开的,可以分别保存或加载模型和参数.所以pytorch的保存和加载对应存在两种方式: 1. 直接保存加载模型 (1)保存和加载整个模型 # 保存模型 torch.save(model, 'model.pth\pkl\pt') #一般形式torch.save(net, PATH) # 加载模型 model = torc

  • pytorch_pretrained_bert如何将tensorflow模型转化为pytorch模型

    pytorch_pretrained_bert将tensorflow模型转化为pytorch模型 BERT仓库里的模型是TensorFlow版本的,需要进行相应的转换才能在pytorch中使用 在Google BERT仓库里下载需要的模型,这里使用的是中文预训练模型(chinese_L-12_H-768_A_12) 下载chinese_L-12_H-768_A-12.zip后解压,里面有5个文件 chinese_L-12_H-768_A-12.zip后解压,里面有5个文件 bert_config

  • PyTorch模型转TensorRT是怎么实现的?

    转换步骤概览 准备好模型定义文件(.py文件) 准备好训练完成的权重文件(.pth或.pth.tar) 安装onnx和onnxruntime 将训练好的模型转换为.onnx格式 安装tensorRT 环境参数 ubuntu-18.04 PyTorch-1.8.1 onnx-1.9.0 onnxruntime-1.7.2 cuda-11.1 cudnn-8.2.0 TensorRT-7.2.3.4 PyTorch转ONNX Step1:安装ONNX和ONNXRUNTIME 网上找到的安装方式是通过

  • Python机器学习pytorch模型选择及欠拟合和过拟合详解

    目录 训练误差和泛化误差 模型复杂性 模型选择 验证集 K折交叉验证 欠拟合还是过拟合? 模型复杂性 数据集大小 训练误差和泛化误差 训练误差是指,我们的模型在训练数据集上计算得到的误差. 泛化误差是指,我们将模型应用在同样从原始样本的分布中抽取的无限多的数据样本时,我们模型误差的期望. 在实际中,我们只能通过将模型应用于一个独立的测试集来估计泛化误差,该测试集由随机选取的.未曾在训练集中出现的数据样本构成. 模型复杂性 在本节中将重点介绍几个倾向于影响模型泛化的因素: 可调整参数的数量.当可调

随机推荐